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- — i - shadowed face. These samples of different colored paints
Abstract. Many different descriptions of Retinex methods of light- are measures of sensation. Here the two faces are different
ness computation exist. We provide concise MATLAB™ implemen- . L . :
tations of two of the spatial techniques of making pixel comparisons. In compe}rlson, the q.uestlon of the_percewed reflectances of
The code is presented, along with test results on several images the cube’s surfaces involves cognition. It asks the observer
and a discussion of the results. We also discuss the calibration of to recognize the paint on the cube. Asked to repaint the
input images and the postRetinex processing required to display the cube, the observer is not confused by sun and shade, and
output images. © 2004 SPIE and IS&T. [DOI: 10.1117/1.1636761] would simply apply white paint. In terms of perception, the

two faces of the cube are identical. In contrast, Retinex
1 Introduction calculate_s lightness sensations: it cannot be used to calcu-
] ) ) late physical reflectances or perceived reflectances.
The Retinex model for the computation of lightness was  Tne first model designed to calculate lightness was de-
introduced by Land and McCarirMcCann refers to these  scribed in Land's Ives Medal Address to the Optical Soci-
models as ratio-product-reset average, but for simplicity, ety of America in 1968 and later publishédhis lecture
we call these operations the Retinex model. Frankle andincluded a working demonstration of a primitive electronic
McCann provide complete FORTRAN code for their algo- Retinex camera. This was followed by publications and
rithm, with extensive discussion of image processing Stepspatents with additional details and improvemettS.Mc-
that follow spatial comparisons. Since that time, Land and cann. McKee, and Tayldrdescribed a study of human
his colleaguiaes have described several variants on the origizolor constancy that included color-matching experiments,
nal method’™® The variants on Retinex mainly aim to im-  the details of the lightness model, and successful results of
prove the computational efficiency of the model, while pre- mdeling the experimental data. This result was further de-
serving its basic underlying principles. veloped to show that there is no effect of cone pigment
Retinex calculations aim to predict the sensory response;gaptation in color constantyThe Retinex operators were

of lightness. It is important to distinguish between physical gg|ected for simplicity to mimic biological operators that

reflectance, the sensation of lightness, and perceived reflecgm, difference, and rectify input signals to obtain spatial
tance, which are three distinct entities. A single model canjpteractions.

attempt to calculate only one of the three: the Retinex goal Dynamic range compression of real images was de-
is to calculate the sensation of lightness. Consider the cas@criped in a patent by Frankle and McCanfhis imple-

of two faces of a white cube, one in direct sunlight and the mentation used specialized hardwaketernational Imag-
other in shadow. Physical reflectance is a measure of 3ng Systems S image processor with scrollable 8-bit
property of the cube’s surface relating its radiance t0 its jyaqe planesfor efficient image calculation. It described

irradiance. ? . ; . .
. . he i hat information from "2pixels i mul
The reflectances of the two faces are identical. Sensa-t € idea that information fro pixels is accumulated

tions, on the other hand, are the appearances of the faces &fter_n steps of the process. Th|s_ patent also _descnbed the
the cube in the sun and shade. To create the same appeamultlresolutlon_ ap_pr%%gh to Retinex calculation used for
ances in a painting, a fine art painter would mix white with computer applications.

a little yellow to make the sunny face, but use white with

X Appropriate Input Data
blue and a little black to reproduce the appearance of the PP p ) P ) ) o )
For quantitative testing of the Retinex model, it is crucial
that the data be calibrated in the sense that the image digital
—o ed 2003 revised , ed S 2003‘values must be a logarithmic function of scene radiance,
zé"cp:,;tfﬁgr guﬁfc‘z‘t’sn Ot 15 g, eed manuscript recelved Sep. 15, 20039 they must be represented with sufficient precision.
1017-9909/2004/$15.00 © 2004 SPIE and IS&T. McCann used slope 1.0 photographic film to capture real
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Table 1 This table describes the care one must take in preparing input images. The data comes from
the image of two test targets: one in sun, the other in shade (see Fig. 1). The shade reduced the
illumination such that white paper in the shade sends the same radiance to the eye as the black paper
in the sun. The left box demonstrates the digitization of raw image data as equally spaced log;,
increments. In other words, convert the scene into log radiance and then quantize to 8-bit (0 to 255)
digits (log then quantize). The first column specifies either sun or shade illumination. The second
column describes the papers in the grayscale. The third column lists the scene radiance from the two
identical grayscales in sun and in shade. Note that the radiance from the black in the sun is equal to
that from the white in the shade. The fourth column, in the left box, lists log radiances of scene
radiance values (column 3). The fifth lists the 8-bit Quantized Log Digits for the values in column 4.
Quantizing the log image makes equal log increments with equal differences 0.45 log units in radiance.
That means each digit represents radiance ratio steps of 1.0321. The right box demonstrates problems
arising from quantizing before converting to log. The sixth column (right box) lists the 8-bit quantized
linear digit. The seventh column lists the log quantized digit. This segments the image into equal linear
increments, namely equal radiance differences of 13.3971. The consequence of this is that all radi-
ance values for Black, Dark gray 4, and Mid gray 3 are all represented by the same digit, 0. In other
words, quantizing the input image to digits shows poor use of digits. Following quantization with a log,
transform does not improve the image. Representing radiances of the input image as log quantized
digit (log then quantize) makes a suitable input image for studying high dynamic range images. Using
log quantized digits (quantize then log) makes a highly undesirable input image.

Quantized Quantized Log
Scene Log log linear quantized
Paper radiance radiance digit digit digit
Sun White 3162 3.50 255 255 255
Light gray 1 1412 3.15 229 114 229
Gray 2 631 2.80 204 51 204
Mid gray 3 282 2.45 178 23 179
Dark gray 4 126 2.10 153 10 152
Black 56 1.75 127 5 131
Shade White 56 1.75 127 5 131
Light gray 1 25 1.40 102 2 102
Gray 2 11 1.05 76 1 80
Mid gray 3 5 0.70 51 0 0
Dark gray 4 2 0.35 25 0 0
Black 1 0.00 0 0 0

images(Ektachrome 5071 slide duplicating fijmHe was data for quantitative testing of the Retinex model.
able to measure an in-camera dynamic range of 3.5 log Nevertheless, Retinex often enhances random images
units. The importance of the logarithmic function follows that have unknown and unknowable radiances for
from Wallach’s experiments on appearantdde showed  inputs®*'°The process improves the visibility of dark ob-
that equal radiance ratios generate equal lightness differjects while maintaining the visual discrimination of the
ences. A pair of papers, i.e., a 20% gray paper and a 100%ight areas. Unlike lookup tables, which improve one range
white paper, have the same lightness difference in sun andf radiance at the expense of others, Retinex improves vi-
shade. The pair also has a Jggedge difference of 0.7, sual differentiation in all ranges of radiances. The danger is
regardless of illumination. If the input image data deviates that artifacts such as noise create artificial edge information
from logarithmic, then the log edge difference for these that is enhanced by Retinex processing. The ability to bring
papers will change with illumination, and the calculated out shadow detail is limited by image noise.
lightness difference of the pair will change. For Retinex to )
work well, edge ratios, or log differences, within an ob- 3 Retinex Operators
ject must be independent of illumination. Accurate logarith- The original Land and McCann worklescribed four steps
mic calibration guarantees this to be the case. for each iteration of a Retinex calculation: ratio, product,
The need for sufficient precision can be demonstrated byreset, and averad@.With the exception of resétthese
comparing two routes to the same scaling of an image. Inoperators have remained the same over the years. These
one, we convert raw data to log radiance and then quantizepperators are iteratively applied to an image, but the man-
to 8-bit log;y digits. This represents the image wédlee ner in which they are applied has varied. The focus of this
Table 1. In the other example, we quantize raw data to work is to list specific details of how these four operators
8-bit linear and then take the log. The 8-bit quantization are applied to the image.
stage truncates the information severely. Mid gray, dark A fundamental concept behind Retinex computation of
gray, and black are all represented by the same (Ggi¢ lightness at a given image pixel is the comparison of the
Table 1, right columns One cannot take an existing 8-bit pixel’s value to that of other pixels. The main difference
image, apply a log to it, and have meaningful input image between the Retinex algorithms is the way in which the
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other comparison pixels are chosen, including the order inthat each level of the image pyramid differs from previous
which they are chosen. They use the same calculations bukevels by a factor of 2 in each dimension. It is not a serious
have dramatically different computational efficiencies in limitation in practice.
dealing with large real images. The original way of defining ~ The algorithm assumes that input digits are proportional
comparisons is by following a path, or set of paths, from to the logarithm of scene radiance and are of meaningful
pixel to neighboring pixel through the imadeLightness  precision. Using logarithms simplifies the computation of
estimates are accumulated along the path in a sequentialadiance ratios, which become simple differences. It also
product(SP. SP starts as 1 and then is modified by multi- implies that when results from different spatial compari-
plying it with the ratio of the next pair of pixels along the sons are averaged, the averaging is in log space and hence
path. In the case of the path following, path length affects equivalent to a geometric mean.
the results substantially. Short paths mean the comparison In the first step, the log image is averaged down to the
is made only to others in a spatially localized group of lowest resolution level, which, depending on the input di-
pixels. Intermediate path lengths are to be used when modmensions, will be of the size @1, 1x2, 1xX3, 2x3, 3
eling human vision. Infinite path lengths result in a degen- » 4 3x 5 4x 5, or 5x 5. At each step, the resolution level
erate case, in which the output image is simply a scaledyjj e doubled. The number of layers in the pyramid de-
version of the |nputl|m??(1aé Infinite path lengths should not hends on the size of the input image. The number of layers
be used to model visiori." _ will be the greatest power of 2, dividing both the width and
A reset step is a second important feature of RetineX. heignt of the input images as calculated by the function
Each time a comparison is made, the SP is tested; if 'tComputeSteps.

exceeds 1.0, it is reset to 1.0. In Fhis case, the value 1.0 \when the resultécalled new producisat one level of
becomes the current lightness estimate. A third aspect Ofdimensiom-x-m have been computed, the values are then
Retinex is the way in wh!ch lightness estimates o.btamed replicated to form an old product image of dimensiam 2
from different paths to a pixel are combined. In earlier ver- ) . :

X -2m. In our implementation, we pad the old product im-

sions, Retinex also included a thresholding step. However, ) I . o
g sep age with zeroes to simplify handling boundary conditions.

it is not included in later versiofisand is not part of the Th ol di ded h 4 of th
MATLAB™ implementations shown later. The fourth-step tat%sr? extra pixels are discarded at the end of the compu-

averages present values of the product with previous ones:
gesp P P At all levels, the new product, a precursor of calculated

lightness, for each pixel is computed by visiting each of its

4 Implementations eight immediately neighboring pixels in clockwise order.
) ) ) Each visit involves a ratio-product-reset-average

We h_ave chosen two versions o_f Retinex to implement. Theoperation? which is implemented by the function Com-
first is a computer-based version described by McCann, parewithNeighbor. It subtracts the neighbor’s log lumi-
which we refer to as McCann99 Retinesee Fig. 6. The  hance(the ratio step and then adds the result to the old

second is an older specialized-hardware ver%_iwhjch W€  product(the product step If the result exceeds the maxi-
call Frankle-McCann Retinex. The two versions both re- ..um defined by Maximum, it is reset to Maximufthe
place the path following with more computationally effi- eget step Finally, the new product for the pixel obtained

cient spatial comparisons. McCann99 Retinex creates &, comparison to its neighbor is averaged with the previous
multiresolution pyramid from the input by averaging image g product.

data. It begins the pixel comparisons at the most highly A crycial parameter to the McCann99 algorithm is the

averaged or top level of the pyramid. After computing nymper of times a pixel’s neighbors are to be visited. In the
lightness on the image at a reduced resolution, the resultingqqe this is set by niterations. It controls the number of
lightness values are propagated down, by pixel replication.ines the neighbors are cycled through, which, as a result,
to the pyramid's next level as initial lightness estimates at sffects the distance at which pixels influence one another.
that level. Further pixel comparisons refine the lightness This occurs because the new product values for all pixels

estimates at the higher resolution level, and then those newye peing computed in parallel, so that after one iteration,
lightness estimates are again propagated down a level in thg neighboring pixels have had their new products values

pyramid. This process continues until new products havepgated. Hence, in the second iteration, these new values

been computed for the pyramid's bottom level. _ involve information propagated from beyond a pixel’s im-
_In comparison, Frankle-McCann Retinex uses single pegiate neighbors. In the limiting case of an infinite num-

pixel comparisons with variable separations. An important o, of iterations, the algorithm converges to produce an

difference between this method and that described in '—a”doutput image that is simply the input image scaled by the

and McCanhis that there are no paths. Asingle pixel even- image’s maximum value. A practical value for the number

tually averages different products from all other pixels. The o jtarations is 4. The final step is to scale the new product

advantage of this structure, and also for the multiresolution,,5,es to make an estimated lightnésse Sec. 6 on scaling

approach, is that Ipng—distance interactions are propagatedys Retinex output to desired media and purpoda the

with fewer comparisons. case of color images, the function retingmccann99 must

be applied to each of the color channels independently.

. . . The code is based on MATLAB™ 8/ersion 5.1.0.421L

4.1 McCann99 Multilevel Retinex Details For the reader unfamiliar with MATLAB™, the statement

For this implementation, the input images must be of di- IP(IP>Maximum)=Maximum, which sets all values in

mensionw-2"xh-2", wherew=h andw andh are inte- matrix IP that are greater than Maximum to Maximum,

gers in the ranggl,5]. This constraint arises from the fact demonstrates an important feature of the language, namely,
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that most of the functions and operators work on whole jpeg coefficients. Any reduction in information will likely

matrices applying the given function to all matrix elements. be visible in the small humber-of-pixel image, while the
larger image might well be compressed by factors of 10:1

4.2 Frankle-McCann Retinex or 20:1 without noticeable effect. The difference arises be-

. . _ cause the size and viewing distance control what informa-
As in McCann99 Retinex, Frankle-McCann Retinex com- tjon the observer can see in the final prints. Large digital

putes long-distance interactions between pixels first andfjjes often contain more information than can be seen in a
then progressively moves to short-distance interactions. Ingmg|| print. This is the information that jpeg discards. As
Frankle-McCann, the spacing between the pixels beingith unsharp masking, the user specifies the spatial param-
compared decreases with each step. The direction betweepiers to optimize performance and avoid artifacts.
pixels also changes at each step, in clockwise order. Ateach  Retinex has parameters that are responsive to both spa-
step, the comparison is implemented using the ratio-iig| frequency and dynamic range of the input data. The
product-reset-average operation. The process continues Utumper of iterations, as specified in the MATLAB™ code
til the spacing decreases to 1 pixel. _ by niterations, controls the amount of dynamic range com-
The original algorithm assumed the input image to be pression and sets the stage for a different level of postpro-
As aresult, the initial spacing between pixels started at 256.postLUT derives from historical use of image processing
We have generalized the algorithm slightly so that our hardware using a lookup table. PostLUT processing simply
implementation works on an image of arbitrary size. In this yefers to the application of a functiohapplied uniformly

case, the initial spacin@s encoded by the variable shif to every image pixell (x,y)=f[1(x,y)], for all image lo-

computed as the largest power of 2, smaller than both of the. yi015"¢ vy “The effect of the number of iterations can be
input image dimensions.

: : seen in Fig. 1.
The function CompareWitls_row, s _col) updates the . .
current lightness estimate for a pixel using the ratio- As we can see, the effect of the number of iterations

product-reset-average operation described before. In th%r;]lé?rr:tté%n% Istthoeritrjnuaﬁﬁhrzﬁogtirg Stthgf ;?Statc;mraa?:]as ’ ?ig eTo_-
case of Frankle-McCann, it is based on the pixel located at y 9 9 : P

a distance of srow, s_col. The square spiral path structure ce_zshs m0\|/|es (tjhe_ %r_l;fire image into a Sma”efddy“a”?ic r\a,l\?ghe,
; o v ; -~ with smaller digit differences representing edge ratios. Wit
in this implementation means that when this function is . . 2

called ong of the two parameters will always be zero. The V&Y few iterations, the range of output.d|g|ts IS sma[l. The
originél Frankle and McCarfrimplementation had the op- PostLUT expansion(stretching of the image intensities

. . T : must be large to regenerate edge ratios appropriate for a
tion of either square or 8-direction comparisons. print. With more iterations, the range of output digits is

_ larger. The postLUT expansion will be moderate to regen-
5 Retinex Parameters erate edge ratios. With a very large number of iterations,
All spatial operators use variable parameters to appropri-the range of output digits is large, approaching that of the
ately match their effects to input images. For example, thisinputimage. The postLUT expansion must be small to none
is true of unsharp masking, jpeg, and Retinex spatial operat0 regenerate edge ratios. The amount of postLUT expan-

tors. sion and its sha_pe will vary with the amount of dynamic
The purpose of unsharp masking is to change the spatialangé compression. ) ) _
content in the image, particularly in the high-spatial-  The examples of unsharp masking and jpeg compression

frequency components. When successfully used, the imagélemonstrate the need for selecting the right parameters to
looks sharper and free of artifacts. With inappropriate pa- match viewing size and distance. Analogously, the viewing
rameters, the process will generate artifacts that are visibledistance, size, dynamic range and noise level of the input
to the observer. If we compare the effects of a particularimage, the number of iterations, and the postLUT are all
unsharp mask on same-size prints of a 266256 digital important to make artifact-free Retinex images.
image with the effects on an 2k-2k image, we see that ) ) ) )
they act very differently. A sharpening filter that is appro- 6 Scaling of Retinex Output to Desired Media
priate for the small image will have no effect on large im- and Purpose
ages, while an appropriate filter for the large images will As shown in Fig. 1, the contrast of the output is controlled
introduce artifacts in small ones. Given a print size and aby the number of iterations. This parameter can vary the
viewing distance, one can optimize the shape of the filter output from radical to no dynamic range compression. The
kernel. The choice of sharpening kernel is selected so as tanput data also plays a major role. The total dynamic range
keep artifacts below visual threshold, which is a function of of input data determines the magnitude of radiance ratio
both spatial frequenci;?, size of the display? and light in-  associated with each digit. The final parameter is the
tensity of the display’ postLUT that matches the final new product with the output
An analogous spatial dependence is found in jpeg com-media. That media can be a printer, a monitor, a LCD dis-
pression, where knowledge of human sensitivity to spatial play, a system profile, a 3-D plot of output at each pixel
information is used to reduce the number of bits for render- (output equal heightor a pseudocolor image. The essential
ing a visually similar imagé? When we select a quality idea is that the input calibration controls the correlation
factor, we are controlling an underlying array of coeffi- between digital differences and radiances in the world. The
cients that filter the data, so as to reduce the data needed taumber of iterations controls the degree of compression.
recreate the image. To make two same-size prints from aThe postLUT controls the rendition of new product digital
256-x-256 versus a 2k<-2k image requires different differences in the output media. All three parameterput
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128 ileratkms

Fig. 1 This figure demonstrates the role of the number of iterations and postLUTs. The first column
shows the effect of spatial comparisons (ratio product reset average). The second column is the
histogram of the images in the first column. The third column shows images that have been stretched
by a different postLUT for each number of iterations. The first row shows the input log,, image scaled
so that 3.5 log, units covers 0 to 255. The sun half of the image is on the right and the shade half is
on the left. The shade image is a lower radiance copy of the sun image. The histogram of this image
is in the second column. The third column image is the same as the first column, illustrating that it has
a slope 1.0 postLUT. Output equals input. The second row shows an output image using one iteration,
with its histogram. Here the output dynamic range has been compressed into the top 25% of the O to
255 digit range. A slope 4.0 linear postLUT will stretch the first column image to render contrast in the
sun properly. It is very steep and generates artifacts. The third row shows the output for four iterations,
and its histogram. Here the range data has been compressed from 3 log units to 1.5. A slope 2.0
postLUT has only to expand the data from 128 to 0. The fourth row shows the output for 128 iterations
and its histogram. There is only a 25% compression. A slope 1.5 postLUT will be very gentle; however,
the improvement of the shadow detail in the third column output image is minimal. In this figure, we
used simple linear postLUTs to illustrate how calibration, number of iterations, and postLUT work
together. To optimize the image, these postLUTs should be shaped so as to take into account the
response of the output device and the tone reproduction curve desired. (See Appendices 2 and 3 of
Frankle and McCann for details.?)

dynamic range, number of iteration, and postl)Uife cru- These calculations used the same pattern of spatial com-
cial to the process. All three share the control of the output parisons for each layer of comparisons. The McCann99
image. They can be used only as well designed sets. Theyutput shows the effect of processing the 8-pixel neighbors
are not randomly interchangeable. in clockwise order. No postLUT has been applied to these
images. This enhances the visibility of the effect.

7 Results on Test Images The calculations in Fig. 2 used the same pattern of spa-
Figures 25 illustrate the behavior of the two algorithms. tial comparisons for each size_of comparisons. The original
Figure 2 shows the behavior when the input is a simple Frankle and McCann calculation changed the order of the
square at the very center of the image. A slight asymmetrydirection of comparisons in each size of spatial separation.
can be seen in both the McCann@$sing four iterations  This sequence of the spatial process was controlled by a
comparing eight nearest neighbp@nd Frankle-McCann  LUT of comparison directions. Such randomization of the

(using four iterations of four direction®utputs. comparison process minimizes the directional gradients
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Fig. 2 Effect of McCann99 and Frankle-McCann processing (with-
out postLUT) on input of a single bright square against a black back-
ground. In the limiting case of the square being a single pixel, this is
analogous to the point spread function for the algorithm. It must be
noted that because of the reset step, the shape of this function
varies depending on the direction of individual comparisons of the
image content. Frankle-McCann used different papers of spatial

> o o o -

139 ——eae——— 152

> o o O -

Fig. 3 Logvinenko cubes pattern illusion. As shown on the left, the
input values of the cube tops are equal despite the fact that we see
them as unequal. McCann99 four-iteration Retinex output values
are shown on the right.

comparisons to minimize these effects. From left to right we have:
input image, McCann99 four-iteration output, and Frankle-McCann
four-iteration output. minance and spatial frequency domains. Numbers of itera-
tions for each pixel separation or level of pyramid
o , processing must match human spatial frequency Hta.
shown in Fig. 2. Alternatively, one can change the averag- pjternatively, it can be used to enhance images of unknown
ing process controlling the old product. If all the reports cajibrations in digitization. In an uncalibrated mode, it is
from different directions were averaged before changing more limited. The system works by enhancing edges. If
the value of the old product, then these calculated spatialyoor calibration introduces edges from noise, the process
asymmetries are not observed. The use of postLUTs anqyjjj| enhance the noise. Nevertheless, uncalibrated input im-
more complex sequences of spatial comparisons all contribzges generally appear better with Retinex processing than
ute to reducing the magnitude visibility of asymmetries.  \yithout it.

Figure 3 shows Logvinenko's gradient experiment,  As in many image-processing operatidfisthere are
which generates a large lightness change between the dianhree sequential steps:
monds. A vertical sinusoidal gradient in nondiamond areas
creates the illusion. The numbers on the left side of Fig. 3
show that the input digits for the light and dark diamond
faces are both 139. The numbers on the right show the »
output from the corresponding faces to be 152 and 163 after
McCann99 four-iteration processing. McCamaports that,
“Retinex models can predict appearances that were previ-
ously attributed to cognitive behavior.” Figure 4 shows
pseudocolor renditions of inpyleft) and output(right) of
the Logvinenko illusion. The diamond-shaped tops of the
cubes are equal on the left and unequal on the right. Note
that the upper faces of the output cubes are not uniform.

Figure 5 shows the effect of McCannd9 applied to a The process assumes that the visual system uses edges to

c_?rllor |hmagbe with a I_su db?tannalh bl;’teh cololr casht. Thel a_lgé)— synthesize appearance. The Retinex algorithms provide an
rthm has been applied to each ot the color channeéls in e'image processing engine that synthesizes sensation images
pendently. Clearly, in this case the color cast has been re

4. Reti diff ; I i from spatial comparisons of radiance inputs. The meaning-
moved. Reunex difiers Irom many  color CONnSancy g, ,aameters in McCann99 are the pyramid level and the
methods, in that.'t dogs not aim to find a single chromatlt_:— number of iterations. In Frankle and McCann, it is separa-
ity for the scene illumination, as is the case, for example, in '

the neural networ and color by correlatidd methods tion and the number of iterations. In McCann, McKee, and
. . . oy ) ' Taylor, it is path length and the number of paths. A number
Retinex instead adjusts the image colors in a nonglobal

ﬁf studies experimentally measured the appearance of a va-

manner as IS necessary, since the model attempts to matc ety of achromatic and color constancy experiments. Using
the human visual response. Some effects of this can be seef)

in the way that some of the green bleeds into the white areg
surrounding the C in Compiler, and the way the blue is
darkened near the white lettering on the right-hand blue
book in Fig. §b).

1. taking the raw input and transforming the informa-
tion into an image space appropriate for the process

. performing the process

3. scaling the output process into a space appropriate for
the end use. In this particular case, ideally the input
transforms convert the captured digits into a space in
which constant, scene edge ratios have constant dif-
ferences in digits. This property can be used by the
process to render pairs of objects in different illumi-
nation as equally different in appearance.

is quantitative data, it is possible to experimentally opti-
ize the parameters of the modél.=2°The details of this
work are summarized by Ciurea, Funt, and McCrand
McCann and Savo3f All of these studies indicate that the
human visual system is neither local nor global, with regard
. . to spatial interactions. Neither local center-surround opera-
8 Discussion tors, nor global gray-world models can account for psycho-
This work describes the basic Retinex algorithms in physical result$’ The spatial frequency filter applied by
MATLAB™ code. It provides the starting point for many human vision is image dependéfiiThe effect of maxima
different implementations for many possible variations. have an effect over large distances, but varies with distance
This code is the basis of making spatial comparisons in aand enclosuré!>?

very efficient manner. In carefully calibrated situations, it In the examples described, we used constant values for
can be used as the basis for a model of human color apthe number of iterations for all levels of a pyramid. Al-
pearance. This requires accurate calibration in both the lu-though efficient, this is not the best set of parameters for
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Fig. 4 Pseudocolor representation of a portion of the Logvinenko cubes input (left) and McCann99
four-iteration output (right). Note that despite the fact the upper cube faces on alternating rows appear
to differ in intensity, the top faces of all the cubes are, in fact, both uniform and equal. In the output,
however, the top faces of the cubes are no longer equal nor are they completely uniform.

modeling human vision. An obvious variation is to have the separation or the pyramid level controls the spatial fre-
different numbers of iteration for each size. Franke and quency of the response. The number of iterations at that
McCann used different numbers of iterations for each sizelevel controls the strength of the filter at that frequency.
of separation. They also changed the pattern of directions taJust as human vision requires models using multichannels
remove the pattern found in Fig.?2The 1, 4, and 128  with different filter strengths, the Retinex models should
iteration images in Fig. 1 could be described by their have the same spatial frequency tuning.

spatial-frequency content. The difference between the input  SoboP? has described variations to the Retinex process
and output images describes a spatial filter. That filter canthat uses LUTs to control the magnitude and shape of edges
be resolved into a 2-D spatial filter, or set of spatial filters. at different spatial separations. This algorithm produces
Since the work of Campbell and Robson, and Hubel anddramatic images. The ability to control different spatial fre-
Wiesel, human visual processing has been regarded as setpiencies adds considerable power to the algorithm. In ad-
of spatial channel® As demonstrated in Fig. 1, the number dition, it makes the model more like human vision.

of iterations controls the strength of the filter. The greater  An important final variation is the use of the spatial
the number of iterations, the weaker the filter. The size of comparison engine for gamut mapping problems. Examples

Figure 5C

Fig. 5 (a) Input with blue color cast created by scene illumination, for which the camera was not
balanced. The image also has extended dynamic range obtained by frame averaging. (b) Output from
the McCann99 four-iteration. (c) Output from the Frankle-McCann four-iteration. The results here can
be compared with those of Barnard.'* Note that both the input and output images have been adjusted
with postLUTs for printing. The actual Retinex input image is in log space.
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Matlab implementation of McCann99 retinex

Notation:

L: logarithmic input image

nlterations: number of iterations for each pixel

nLayers: number of pyramid layers

OP: matrix of Old Products for all pixels

RR: input radiance

NP: matrix of New Products for all pixels

OPE: OP padded with zeros for doing all computations at once

RRE: RR padded with two additional columns and two additional rows
1P: Intermediate Product computed with the Ratio-Product

function Retinex = retinex_mccann99(L, nIterations)
global OPE RRE Maximum

{nrows ncols] = size(L); % get size of the input image
nLayers = Computelayers(nrows, ncols); % compute the number of pyramid layers
nrows = nrows/ (2”nLayers); % size of image to process for layer 0
ncols = ncols/ (2"nLayers);
if (nrows*ncols > 25) % not processing images of area > 25
error(‘invalid image size.’) % at first layer
end
Maximum = 1; % maximum color value in the image
OP = Maximum*ones([nrows ncolsl); % initialize ©ld Product
for layer = 0O:nLayers
RR = ImageDownResolution(L, 2" {nLayers-layer)); % reduce input to required layer size
OPE = [zeros(nrows,l} OP zeros(nrows,1)]; % pad OP with additional columns
OPE = [zeros(l,ncols+2); OPE; zeros(l,ncols+2)]; % and rows
RRE = [RR{:,1) RR RR(:,end}]; % pad RR with additional columns
RRE = [RRE(1l,:); RRE; RRE(end, :)]; % and rows
for iter = l:niterations

CompareWithNeighbor (-1, 0}); % North

CompareWithNeighbor (-1, 1); % North-East

CompareWithNeighbor (0, 1); % East

CompareWithNeighbor (1, 1); % South-East

CompareWithNeighbor (1, 0); % South

CompareWithNeighbor(1l, -1); % South-West

CompareWithNeighbor (0, -1); % West

CompareWithNeighbor (-1, -1); % North-West

end
NP = OPE(2:(end-1), 2:(end-1));
OP = NP(:, [fix(1:0.5:ncols) ncols}l); %%% these two lines are equivalent with
OP = OP({£fix(1:0.5:nrows) nrowsl, :); %%% OP = imresize(NP, 2) if using Image
nrows = 2*nrows; ncols = 2*ncols; % Processing Toolbox in MATLAB

end

Retinex = NP;

function ComparewWithNeighbor(dif_row, dif_col)
global OPE RRE Maximum

% Ratio-Product operation
IP = OPE(2+dif_row: (end-1+dif_row), 2+dif_col: {end-1+dif_col)) +

RRE(2: (end-1},2: (end-1)) - RRE(2+dif row: (end-1+dif row), 2+dif_col: (end-1+dif_col));
IP(IP > Maximum) = Maximum; % The Reset step
% ignore the results obtained in the rows or columns for which the neighbors are undefined
if (dif_col == -1) IP(:,1) = OPE(2:(end-1}),2); end
if (dif_col == +1) IP(:,end) = OPE(2:(end-1),end-1); end
if (dif_row == -1) IP(l,:) = OPE(2, 2:(end-1)); end
if (dif_row == +1) IP(end,:) = OPE{end-1, 2:{end-1));: end
NP = (OPE{(2:(end-1),2:(end-1)) + IP)/2; % The Averaging operation

OPE(2: {end-1), 2:{(end-1)) = NP;

function Layers = ComputelLayers(nrows, ncols)
power = 2°fix(log2{gcd(nrows, ncols)}); % start from the Greatest Common Divisor

Fig. 6 Matlab implementation of McCann99 Retinex (continued on next page).

are in another article in this isst®.The principle is supply the ratios. The Best image is used to supply the reset
straightforward. If displays and printers had the same colorvalues. The rest of the process is the same as described
spaces, then Tristimulus matches would be able to succesdefore. The color gamut calculation provides an excellent
fully transform display/print images. However, they occupy example of using the Retinex spatial-comparison process to
only half of their combined physical color space. Using generate new sensation images that have very similar ap-
strict colorimetric matches creates problems with extra- pearances with different radiances at each pixel. Experi-
gamut colors. All of the variations between the gamut of ments have shown that human spatial processing is key to
the smaller space are represented by the gamut value. Thianderstanding color constancy, high dynamic range sensa-
clipping of local detail produces undesirable artifacts. tions, and transparenéy.Further, spatial comparisons can
Many algorithms systematically distort the colorimetric be used to simplify gamut mapping algorithms. As long as
matches to achieve an image with a better appearance. Alspatial comparisons are constant, near-constant appearances
the transforms increase the colorimetric erf§r! can be made from very different stimuli.

The Retinex approach uses two different sets of RGB
input images. One imag&oal has digits representing the .
color space values of the large gamut desired image. The® Conclusions
other image(Besh has digits representing the color space We present new, very concise MATLAB™ implementa-
values of the best colorimetric reproduction possible in the tions of two of the main practical Retinex algorithni$he
smaller gamut media. The RGB Goal images are used toMATLAB™ code and figures are available at http:/
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while(power > 1 & ((rem(nrows,
power = power/2;

end

Layers =

power) ~= 0} |

log2 (power) ;

function Result =
[rows, cols] = size(A);
result_rows = rows/blocksize;
result_cols = cols/blocksize;
Result = zeros({[result_rows result_cols}]);
for crt_row = l:result_rows
for crt_col = l:result_cols
Result{crt_row, crt_col) =

ImageDownResolution(A, blocksize)

(rem(ncols,

power) ~= 0)))
% and find the greatest common divisor
% that is a power of 2

the input matrix A is viewed as
a series of square blocks
of size = blocksize

then each pixel is computed as
the average of each such block

of 0@ 40 o 0P

mean2 (A(l+(crt_row-1)*blocksize:crt_row*blocksize,

1+(crt_col-1)*blocksize:crt_col*blocksize});

end
end

Matlab implementation of Frankle-McCann retinex

function Retinex = retinex_frankle_mccann{(L,
global RR IP OP NP Maximum

RR = L;

Maximum = 1;
[nrows, ncols] = size(L};
shift =
OoP =

27 (fix(log2 (min{nrows, ncols)})-1};
Maximum*ones {nrows, ncols)

while (abs{shift) >= 1)
for i = l:nIterations
CompareWith(0, shift);
CompareWith(shift, 0);
end
shift =
end
Retinex =

-shift/2;
NP;

function ComparewWith(s_row, s_col)
global RR IP OP NP Maximum
IP = OP;
if (s_row + s_col > 0)
IP((s_row+l):end,
RR((s_row+l) :end,
else
IP(1l: (end+s_row), 1:(end+s_col)) =

{s_col+l):end) =
{s_col+l):end) -

OP(1: (end-s_row),
RR(1l: (end-s_row),

OP((1l-s_row):end,

nIterations)

of

maximum color value in the image

initial shift
initialize 0ld Product

o0 of

horizontal step
vertical step

@0 gP

9

update the shift

1:{end-s_col)) + ...
1:(end-s_col)});

{l-s_col):end) + ...

RR(1l: (end+s_row),1: (end+s_col)} - RR{(l-s_row):end, (l-s_col):end);
end
IP({IP > Maximum) = Maximum; % The Reset operation
NP = (IP + OP)/2; % average with the previous 014 Product
OP = NP; % get ready for the next comparison

Fig. 6 (Continued.)

www.cs.sfu.ca/research/groups/VisionOur hope is that
this will eliminate much of the variability in what is meant
when different researchers refer to Retinex and thereby fa-
cilitate further rigorous testing and discussion of the
method. For modeling human vision, these MATLAB™
programs depend on calibrated input data. Although these
MATLAB™ programs provide the details of how pixels are
compared and processed during the ratio-product-reset- %

average steps of Retinex processing, they do not provideio.

details on the selection of an appropriate postLUT for a
particular output device. The postLUT must be provided by
the reader.
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