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High-Dynamic-Range Scene Compression in Humans

John J. McCann*
McCann Imaging
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ABSTRACT

Single pixel dynamic-range compression alters a particular input value to a unique output value - a look-up
table. It is used in chemical and most digital photographic systems having S-shaped transforms to render
high-range scenes onto low-range media. Post- receptor neural processing is spatial, as shown by the
physiological experiments of Dowling, Barlow, Kuffler, and Hubel & Wiesel. Human vision does not

render a particular receptor-quanta catch as a unique response. Instead, because of spatial processing, the
response to a particular quanta catch can be any color. Visual response is scene dependent.

|

Stockham proposed an approach to model human range compression using low-spatial frequency filters.
Campbell, Ginsberg, Wilson, Watson, Daly and many others have developed spatial-frequency channel
models. This paper describes experiments measuring the properties of desirable spatial-frequency filters
for a variety of scenes. Given the radiances of each pixel in the scene and the observed appearances of
objects in the image, one can calculate the visual mask for that individual image. Here, visual mask is the
spatial pattern of changes made by the visual system in processing the input image. It is the spatial
signature of human vision. Low-dynamic range images with many white areas need no spatial filtering.
High-dynamic-range images with many blacks, or deep shadows, require strong spatial filtering. Sun on
the right and shade on the left requires directional filters. These experiments show that variable scene-
dependent filters are necessary to mimic human vision. Although spatial-frequency filters can model
human appearances, the problem still remains that an analysis of the scene is still needed to calculate the
scene-dependent strengths of each of the filters for each frequency.

1.0 INTRODUCTION

A major goal of the Polaroid Vision Research Laboratory’s work in the 1960’s was to study the properties
of human vision and develop algorithms that mimic visual processing. One of many important experiments
was the Black and White Mondrian: a High Dynamic Range (HDR) image using an array of white, gray
and black papers in non-uniform gradient illumination." Here a white paper in dim illumination sent the
same luminance to the eye as a black paper in bright illumination. This experiment demonstrated that the
sensations of white and black can be generated by the same luminance. In addition, the range of the
papers’ reflectances in display was about 33:1; the range of the illumination was also 33:1; the total
dynamic range of the display was 1000:1. The appearances of the gray areas in the display were very
similar to those from the display in uniform light. One goal was to propose a model of vision that could
predict sensations in the HDR B&W Mondrian.” **° In short, calculate sensations and write them on film.

Examples of rendering high-dynamic range scenes onto low-dynamic range systems include printers,
displays and the human visual system. Although the retinal light receptors have a dynamic range of 10",
the optic nerve cells have a limited range firing range of around 100:1.  In general, there are three different
approaches to rendering HDR scenes. First, there are tone-scale S-shaped curves used in most chemical
and digital photography®. Tones scale curves are based on photographic sensitometry developed by Hurter
and Driffield” and extended by C. K Mees®’. These tone scale functions are the equivalent of a lookup
Table (LUT) that transforms input digit to output digit. Such curves have little value in HDR scenes such
as the B&W Mondrian. Since both white and black sensations have identical input digits, tied to
luminance, tone scale cannot provide a meaningful solution to the problem. In Land’s 1968 Ives Medal
Lecture, he introduced the Retinex image processing model that calculated sensations and sent sensations to



a display.' This algorithm automatically scaled all pixels in the image to the maxima in a highly non-linear
manner.' The B&W Mondrian experiment, along with a wide variety of others, including experiments on
simultaneous contrast, out of focus images, and color images led to three important general conclusions
about vision. First, that human visual process was scene dependent. Second, that an auto-normalizing
visual system was referenced to the maxima in each channel. Third, that vision used multi-resolution
components to achieve distance constancy. The parallel channel-maxima referencing in independent L, M,
and S color channels provide a mechanism for color constancy.'' Further, this mechanism is consistent
with experiments measuring departures from perfect constancy with variable illumination.'>"

Fergus Campbell and John Robson’s 1965 classic paper'® introduced the sinusoidal spatial displays in
vision research. Blakemore and Campbell’s experiments showed the existence of independent adaptation
channels having different spatial frequencies and different sizes of receptive fields.”” Tom Stockham of
MIT saw the B&W Mondrian demonstration and proposed a spatial-frequency-filter mechanism to
compress the dynamic range of the scene luminances.'® Since then there has been a wide range research
using complex images by analyzing their spatial frequency components.'’

Stockham’s example of a small building with an open door and the Black and White Mondrian both require
strong spatial filters. However, there are images that require little, or no, spatial filtering. The maxima
reset used in Retinex image process has been used to control the extent of spatial processing applied to
different images. In this case each resolution image is auto-normalized to the maximum, just as in color,
when each color channel is auto-normalized to each channel’s maxima. This highly non-linear algorithm
has the desirable property that it generates scene dependent changes in images.'’

This paper looks at three different HDR image-processing systems. First, it studies lightness matching
experiments to calculate the visual mask that is the spatial signature of human vision for different targets.
Second, it uses the same tool to analyze the spatial signature of a software model of vision. Third, it uses
the same tools to analyze the spatial signature of a firmware/hardware processing in a commercial digital
camera.” In each case we will compare the spatial frequency signature of the visual mask for different
images. We find that the three processing techniques have a common property. Each generates different,
image dependent masks. Spatial frequency filters are very effective in rendering HDR images into low-
dynamic range displays and printers. Nevertheless, there remains a problem for these techniques, namely
the algorithm that calculates the filter that is specific for each image. Fixed spatial filters can be shown to
be effective for some images, but cannot mimic human vision if one tests the full range of images from a
foggy day to sun and shade.

“Grays on White” “Grays on Gray” “Grays on Black”

Fig. 1 shows the transparency displays used in the matching experiments. Observers match the same gray
transmissions with different surrounds.

2.0 MATCHING EXPERIMENTS

The experiment consisted of matching a constant set of gray patches on white, gray and black surrounds
(Fig. 1) to a Standard Lightness Display (SLD)." The targets were photographic transparencies. The
optical density for each area (C through J) made to be a close as possible. The object of the experiment
was tozgneasure the change of appearances of the same gray patches with different surrounds in a complex
image.



Observers matched each area in Figure 1 to Lightness patches in the SLD (Range 9.0 - 1.0).. The
luminance of each matching patch in the SLD was measured with a Gamma Scientific telephotometer..
This calibration luminance vs. lightness curve was fit by a five-degree polynomial so as to be able to
calculate the luminance by interpolating Lightness Match values (LM) into luminance. That is, if the
average of LMs from the three observers (three trials per observer) is 6.7, then the luminance estimate from
the polynomial fit (Equation 1) is 355.7 ft-L.

luminance = -0.1156 * (LM)° +1.6592 * (LM)* - 4.1084 * (LM)? - 4.1954 * (LM)? + 34.021 * LM - 26.533

Table 1 lists the telephotometer measurements of Target Luminances from the display vs. the interpolated
SLD luminances of the average match for that area. If human vision acted as a simple photometer, then the
Target Luminances should equal Matching Luminances. Any departures from equal luminances are a
signature of the human signal processing mechanisms. The data in Table 1 (“Grays on White”) shows
matches that are similar to SLD luminances.

Target Match SLD Target Match SLD Target Match SLD

Area Luminance Luminance Luminance Luminance Luminance Luminance
G 1003 1005 1000 1009 920 1009
E 765 826 695 1005 655 1007
I 570 690 515 860 470 968
Cc 431 391 411 741 368 882
J 258 306 222 510 195 741
H 131 94 102 250 89 560
D 61 33 44 59 39 391
F 37 17 24 33 19 287
B 910 1006 198 510 0 3

"Gray on White"

"Gray on Gray"

"Gray on Black”

Table 1 lists the measured luminances for each area described in Fig. 1. It also lists the interpolated values for the
luminances of the average match chosen by observers in a Standard Lightness Display.

The data in Table 1 “Grays on Gray” show most matches have significantly higher SLD luminances. The
data in Table 1 “Grays on Black” shows matches that are even higher than “Grays on Gray” luminances.

Figure 2 plots the difference in luminances (Matching Luminance - Target Luminance) for each area (C
through J) sorted with highest luminance on the left and lowest on the right. The “Grays on White” areas
have matching luminances that are all close to the actual luminances of the target. Some matches had
higher luminances (positive) and others lower luminances (negative), and some were very close to zero
differences. We do not know if these differences are associated with spatial differences between the targets
and the STD, experimental errors, such as small departures for uniform illumination, or observer
variability. In any event there is no evidence of significant systematic differences in matching vs. actual
luminances.
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Fig. 2 shows the differences between match and actual luminances for each area shown in Figure 1. The areas are
sorted by luminance: Area G on the left has the highest luminance (1003,1000,920 ft-L) and Area F on the right has the
lowest luminance (37, 24, 19 ft-L). There is no systematic difference between Match and Actual for “Grays on White”.
Some differences are positive and some are negative. “Grays on Gray” have matches that have differences that are
345 ft-L higher for area I. “Grays on Black™ have differences that are 545 ft-L higher for area J.

The second row of columns in Fig 2 plots the differences for the “Grays on Gray” target. There is no
difference for the lightest area (G). As the luminances of the areas decrease, the differences for Areas E, 1,
C, J, and H are higher, with the maximum difference for Area I. For the lowest luminances, Areas D and F,
the differences are close to zero. The third row of columns in Fig 2 plots the differences for the “Greys on
Black” target. The match for the most luminous area G is slightly higher than actual. As the luminances of
the areas decrease the matches are higher for all areas, with maximum difference for Area J. For the lowest
luminance area, Area F, the difference was 267 ft-L.

3.0 HUMAN SPATIAL PROCESSING

The goal of this paper is to evaluate the spatial frequency signature of human vision. As reported by
countless other experiments, observers match grays in dark surrounds with higher luminances. Is the spatial
influence of white, gray and black surrounds consistent with the hypothesis that human vision incorporates
spatial-frequency filters as a mechanism in calculating appearance? This is where data for both the
luminance of the target and the match can be used to identify the spatial-frequency signature of human
vision. This data can be used to determine if vision uses a fixed set of spatial frequency filters, or instead
uses mechanisms that are scene dependent. The issue of fixed processing versus image dependent
processing is an important one in selecting models of vision.

If the input to vision is an array of luminances, and the output is a second array of matching luminances,
then the signature of the visual process is the change between input and output. Fig. 2 shows one analysis,
namely the difference between match and actual luminances. The data describes the signature, but does not
help us to understand the underlying mechanism. A better analysis is to calculate the transmissions of each
pixel in a spatial mask. This mask is the spatial signature of the visual system for that image. Fig. 3 shows
the idea of a spatial mask. In the upper left it shows the luminances of each gray area. In the bottom right
it shows the average matching luminances chosen by the observers. In between, it shows the relative
transmission of a mask that has the same spatial signature as the human visual system. The values at each
pixel are simply the ratios of the output [Match] and the input [Actual] luminances. Imagine a lightbox
illuminating the “Grays on Black” transparency target. Superimpose the second transparency that is the
spatial record of the human visual system mask. The mask has transformed the actual luminances to the
same relative luminances as the matches. Since the ratio for Area F is 14.8, we need to increase the output



of the lightbox by 14.8 times. The resulting luminances for the combined transparencies are the same as

those chosen by the observers as matches. The mask described here is the signature for the human visual
system for this particular target.
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Fig. 3 shows the comparison of the Actual luminances in “Grays on Black”(upper left) and the average Matching
luminances (bottom right). The signature of human visual processing is calculated by taking the ratio
[Matching/Actual] luminance for each pixel in the image. This visual mask is the spatial array of human image

processing for this target. This mask is what vision did to “Grays on Black™ input image so as to generate the observer
matches.

If we compare the spatial masks for all three displays we see they are very different. Figure 4 plots the ratio
of [Matching/Actual] luminances normalized to 1009. The luminance masks are very different. The visual
system do not apply a significant mask to the “Gray on White” target; it applied a significant mask to the
“QGray on Gray” target; and it applied a very strong mask to the “Gray on Black”.
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Fig. 4 shows the signature of human visual processing. The visual mask is plotted as the ratio [Match / Actual]
luminances for each area are shown in Figure 1. The areas are sorted by luminance. There is no significant mask for
[Match and Actual] for “Grays on White”. “Grays on Gray” data show a systematic mask applied to the input image.
“Grays on Black” data show a very strong mask. Area F, the lowest luminance area in area is matched in the Standard
Lightness Display by an area with 14.8 times the luminance.



In 1972 Stockham proposed an image processing mechanism using spatial filters. This idea using spatial-
frequency models is a popular approach in many image processing and vision models. Here we evaluate
the present data as a spatial filter. We made images (512 by 512 pixel arrays) for each target for Actual and
Matching Luminance data. The 512x512 array of ratios [Matching/Actual] luminances, normalized by 15,
was the input to a Matlab program that calculated the shifted 2D Fourier transform of each target. The
arrays of ratios describe the visual mask applied by human vision. The shifted 2D FFT are spatial filters
that describe human vision. Figure 5 shows the FFTs of the visual masks derived from matching data.

“Grays on White” “Grays on Gray” “Grays on Black”

Fig. 5 shows the signature of human visual processing presented as a set of spatial filters. The shifted 2D FFT of visual
masks show distinctly different spatial filters for each display. A model of human vision that incorporates spatial filters
needs to first calculate an image-dependent spatial filter. One filter does not fit all scenes. Vision models need to be
responsive to image content because human vision has that unique imaging property.

4.0 RETINEX PROCESSING

Fig.6 shows a Raw and Retinex Processed image of a pair of Jobo test targets in sun and shade. The Raw
image is rendered so that digit is proportional to log luminance. This image is a real-life version of the

Retinex Processed Difference of Log Images

Shifted FFT

Fig. 6 shows the signature of Retinex processing as a spatial filter (bottom right). This is the shifted 2D FFT of visual
masks shown in the upper right. The mask is the ratio image (normalized difference of log luminance) between Retinex
Processed image and Raw HDR image. In the Raw HDR image the black square in the sun (top row-right) is the same
digit as the white square in the shade (second row-right), namely digit 80. In the Retinex processed image black in the
sun is rendered to an output digit of 27, while the white in the shade is rendered as an output digit of 169.



Black and White Mondrian in that the black square in the sun has the same luminance as the white square
in the shadow. In the Retinex Processed image (top left) the black in the sun has lower digital values and
the white in the shadow has higher values than in the Raw image. The visual mask is calculated by taking
the difference of log luminance images. The shifted FFT is a highly directional spatial filter. This Retinex
software algorithm has made image changes that are equivalent to an image dependent spatial filter.

5.0 DIGITAL CAMERA PROCESSING

We have looked at the equivalent spatial filters made from human vision and image processing algorithms.
The third analysis uses images made and processed in a camera.'® A camera setting activates an option to
capture images and apply Bob Sobol’s modification of Frankle and McCann Retinex. As well, the
processing can be shut off, so as to record a conventional digital image. Color images were converted to
grayscale images and scaled to [digit ~ log luminance] with a calibration lookup table. The visual mask
equivalent is the normalized difference of log luminances. The shifted 2D FFT was calculated as above.

HP Digital Flash ON

Difference of Log Images

HP Digital Flash OFF S
- Shifted FFT

Fig. 7 shows processed and unprocessed images of toys on the floor in high-dynamic range illumination. The “Digital
Flash OFF” image is a conventional digital image. The “Digital Flash ON” image is a Retinex processed digital image.
The negative of the OFF image is combined with the positive ON image to form the log luminance mask. The shifted
FFT of the mask is shown on the bottom right.

The shifted FFT in Figure 7 is a strong oriented filter. The effect of a bright patch of sunlight was to make
the Retinex processing in the camera alter the control image significantly, thus make a strong visual mask
equivalent.

Figure 8 show the same analysis of the same scene taken a half hour later. The sunlight is gone and the
illumination is much more uniform. The visual mask equivalent is nearly uniform and the shifted FFT is a
much weaker spatial filter.
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Fig. 8 shows processed and unprocessed images of toys on the floor in more uniform illumination without sunlight. The
“Digital Flash OFF” image is a conventional digital image. The “Digital Flash ON” image is a Retinex processed
digital image. The negative of the OFF image is combined with the positive ON image to form the log luminance
mask. The shifted FFT of the mask is shown on the bottom right.

Digital Flash ON Difference of Log Images

Shifted FFT

M Lagoon SFFT

Fig. 9 (left) shows Retinex image and conventional image; (right) log luminance mask and its shifted FFT.



Figures 9 and 10 show the same analysis of two different outdoor scenes. Figure 9 has very high dynamic
range when the camera was in the shade looking towards the sun. Figure 10 is taken with the sun behind
the camera. As shown above, the visual mask equivalent for high-dynamic range Figure 9 is higher in
contrast than that for Figure 10. The shifted FFT in Figure 9 is a strong oriented filter. Figure 10 show a
visual mask equivalent that is nearly uniform and the shifted FFT is a much weaker spatial filter.

Difference of Log Images

Shifted FFT

Light Mouse SFFT

Fig. 10 (left) shows Retinex image and conventional image; (right) log luminance mask and its shifted FFT.

Figure 11 shows the four shifted FFTs from the camera-processed images. They are all different. This
shows that the camera Retinex processing generates visual masks and spatial-filter equivalents that are
scene dependent. In that regard, this process mimics human vision. As seen in the observer matching data
(Table 1) human image processing is image dependent.

Figure 11 shows the shifted 2D FFTs of the camera image processing for the scenes described in Figures 7,8,9,10.



6.0 DISCUSSION

Gatta’s recent thesis reviews a wide range of work in HDR imaging.”' In one section he summarized many
tone scale-mapping algorithms. Tone scale cannot solve the problem identified in the B&W Mondrian
because white and black sensations are generated by the same input digit. Compressing the digital values
near white helps render details near black. As well compressing digital values near black helps render
details near white. Tones scales, as employed in all of imaging for the past 100 years, is an attempt to find
the best average rendition for all scenes including pictures of objects in fog and HDR scenes. Its fixed tone
scale curve is optimal for only one scene dynamic range.

The reset step in the Retinex algorithm provided means to model simultaneous contrast and to provide
auto-normalization.' Even more important was the idea that reset provided a mechanism for calculating a
low-spatial frequency filter equivalent that was image dependent. This was the important differentiation
from the work of Stockham'’, Fergus Campbell”?, Marr®, Horn*, Wilson”, Watson and Ahumada®, Daly”’
as well recent variations by Pattanik et. al.”®® and Fairchild”,*® They all looked to apply spatial filters to
receptor images, but did not have a mechanism to independently adjust the filter coefficients to each scene.

7.0 CONCLUSIONS

Human vision generates a scene-dependent spatial filter. Patches in a white surround need no spatial
filtering, patches in a gray surround need some spatial filtering, and patches in a black surround need strong
spatial filtering. Retinex image processing algorithms and camera firmware show the ability to generate
the equivalent of scene-dependent spatial filters. The best image rendering for high-dynamic range images
is to calculate the appearance and write the altered image on low-dynamic range media. That means that
some scenes need little or no alteration, while other high-dynamic range scenes require significant changes.
The Retinex processes described in this paper also show scene-dependent processing.

8.0 ACKNOWLEDGEMENTS

The author wishes to thank Mary McCann and Ale Rizzi for many helpful discussions.

8.0 REFERENCES

"E. H. Land & J. J. McCann “Lightness and Retinex Theory”, J. Opt. Soc. Am. 61 1-11, 1971.

2E. H. Land & J. J. McCann, “Method and system for reproduction based on significant visual boundaries of original
subject”, U.S. Patent 3,553,360, June 5, 1971.

*E. H. Land, L. A. Ferrari, S. Kagen & J. J. McCann, “Image Processing system which detects subject by sensing
intensity ratios”, U.S. Patent 3,651,252, Mar. 21, 1972.

4). Frankle & J. J. McCann “Method and apparatus of lightness imaging”, U. S Patent 4384336, May 17, 1983.

5 1. I. McCann “Calculated Color Sensations applied to Color Image Reproduction”, in Image Processing Analysis
Measurement and Quality, Proc. SPIE, Bellingham WA, 901, 205-214, 1988.

6 John J. McCann, “Color imaging systems and color theory: past, present, and future”, Proc. SPIE Vol. 3299, p. 38-46,
in Human Vision and Electronic Imaging III; B. E. Rogowitz, T. N. Pappas; Eds. 1998.

"F. Hurter and V. C. Driffield, “The Photographic Resources Ferdinand Hurter & Vero C. Driffield”, W. B. Ferguson,
Ed., Morgan and Morgan Inc. Dobbs Ferry, 1974.

8 C. E. K. Mees, “An Address to the Senior Staff of the Kodak Research Laboratories”, Kodak Research Laboratory,
Rochester, 1956.

? C. E. K. Mees, “Photography”, The MacMillan Company, 1937.

15 J. McCann, “Lessons Learned from Mondrians Applied to Real Images and Color Gamuts”, Proc. IS&T/SID,
Seventh Color Imaging Conference, 1-8, 1999.

1], J. McCann S. McKee and T. Taylor “Quantitative studies in Retinex theory: A comparison between theoretical
predictions and observer responses to ‘Color Mondrian’ experiments” Vision Res. 16 445-458, 1976.

123, J. McCann, Mechanism of Color Constancy, Proc. IS&T/SID Color Imaging Conference, IS&T/SID, Scottsdale,
Arizona, 12, 29-36, 2004.

13 3. J. McCann, “Do humans discount the illuminant?”, Proc. SPIE Vol. 5666, 9-16, in Human Vision and Electronic
Imaging X; B. E. Rogowitz, T. N. Pappas, S. J. Daly; Eds., Mar 2005.



' F. W. Campbell & J. G. Robson, “Application of Fourier analysis to the visibility of gratings”, J. Phyiol. (Lond.) 197,
551-566, 1968.

15 Blakemore, C. and F. W. Campbell (1969). "On the existence of neurons in the human visual system selectively
sensitive to the orientation and size of retinal images." Journal of Physiology 213: 237-260.,

1T, P. Stockham, “Image Processing in the Context of a Visual Model”, Proc. IEEE, 60, 828-284, 1972.

7 P. G. Barten, “Contrast Sensitivity of the Human Eye and Its Effects on Image Quality”, SPIE press, Bellington, 1-
232, 1999.

'8 The camera used in these experiments is an HP 945 with Digital Flash. This camera uses the Frankle and McCann
algorithm [J. Frankle and J. J. McCann “Method and apparatus of lightness imaging”, U. S Patent 4384336, May 17,
1983.] as modified by Sobol [R. Sobol, “ Improving the Retinex algorithm for rendering wide dynamic range
photographs”, J. Electronic Imaging, 13, 65-74, 2001].

' J.J. McCann, E. H. Land and S. M. V. Tatnall, “A Technique for Comparing Human Visual Responses with a
Mathematical Model for Lightness”, Am. J. Optometry and Archives of Am. Acad. Optometry, 47(11), 845-855, 1970.

» B, V. Funt, F. Ciurea and J. J. McCann, “ Tuning Retinex parameters “, in Human Vision and Electronic Imaging
Vil, B. E. Rogowitz and T. N. Pappas, ed., Proc. SPIE 4662-43, 358-366, 2002.

21 C. Gatta , “Human Visual System Color Perception Models and Applications to Computer Graphics”, Ph.D thesis,
Universit'a Degli Studi di Milano, Milano, Italy, 2006.

2 F. W. Campbell and J. G. Robson, “Application of Fourier analysis to the visibility of gratings”, J. Phyiol. (Lond.)
197, 551-566, 1968.

3 D. Marr, “The computation of lightness by the primate retina”, Vision Res. 14, 1377-1388, 1974.

*B. K. P. Horn, “Determining lightness from an image”, Comp. Gr. Img. Proc. 3, 277-299, 1974.

% H. R. Wilson and J. R. Bergen, “A four mechanism models for threshold spatial vision”, Vision Res., 26, 19-32,
1979.

% A. B. Watson, & A. J. Ahumada, Jr, “A standard model for foveal detection of spatial contrast”, Journal of Vision,
5(9), 717-740, (2005). http://journalofvision.org/5/9/6/

?7'S. Daly, The visible difference predictor: an algorithm for the assessment of image fidelity, International Journal of
Computer Vision 6 (1993), 179-206.

8 SN. Pattanik, J. Ferwerda, M. D. Fairchild, and D. P. Greenburg, “A Multiscale Model of adaptation and spatial
vision for image display”, in Proc. SIGGRAPH 98, 287-298, 1998.

» M. Fairchild and G. M. Johnson, “ Meet iCAM: A next generation Color Appearance Model”, in Proc. 10th
IS&T/SID Color Imaging Conference, Scottsdale, Arizona, 33-38, 2002.2, 17-36, 1983.

3 M.D. Fairchild and G.M. Johnson, “The iCAM framework for image appearance, image differences, and image
quality,” Journal of Electronic Imaging, 13,126-138, 2004.




