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Abstract

Contrast is the well-known observation in which a gray
in a white surround appears darker than in a black one.
An exampleisa32 by 32 pixel gray area subtending 1.5
degrees visual angle on ablack background - 256 pixels
on aside. The gray appears darker when surrounded by a
band of white - 12 pixelswide. The white band is made
up of 2112 individual white pixels. If these white pixels
are redistributed uniformly in the black background the
gray appears much lighter. This paper measuresthe gray
appearance asinfluenced by 2112 white pixel in a 27 dif-
ferent spatial configurations. The set of different spatial
patterns of white pixels that generate the same matching
lightnessfor gray are defined as equival ent backgrounds.
The paper then analyzes the spatial properties of equiva-
lent backgrounds. Gray appears darkest when the white
surrounds the gray and is contiguouswithit. Inthe case
of the distributed white pixels, the gray appears lighter.
This paper presents an analysis of the spatial properties
of intermediate surrounds that give gray the equal visua
appearances.

| ntroduction

Spatial processing in human vision causes different ap-
pearancesfromidentical retinal stimuli.®> Different spa-
tial configurations of surrounds can make substantial
changesin appearance. The goal of this paper isto mea-
sure the appearances of awide range of different spatial
arrangements of an identical set of pixels. By comparing
the results of observer matches, we can identify different
patterns of surround that have the same effect of the hu-
man spatial processing mechanism, namely the observ-
ers pick the same match. Patterns that generate equal
matches for a constant test patch are defined as equiva-
lent backgrounds.

Sets of displays having equivalent backgrounds can
be used for analyzing different spatial models of vision.2&
% A model that mimics the human visual processwill be
ableto correctly predict the spatial patternsthat are equiva
lent.

Experimental Procedure

Experiments have shown that distance from awhite and
enclosure by awhite changes the appearance of grays as
much as one third the range of white to black.?®-?” Size
on the retina and spatial pattern can change similar pat-
ternsfrom contrast to assimilation.??° This paper reports
experiments using 27 different spatial patterns all com-
posed of acentral test patch (made up of 1024 light-gray
pixels) on a background (made up of 2112 white pixels,
62,400 black pixels). These targets were computer gen-
erated and displayed on a CRT monitor viewed at adis-
tance of 38 inches. The square gray center element sub-
tends 0.75° and the entire 256 by 256 display subtended
5.9°. The rest of the monitor screen was covered with
opaque material in a darkened room. Observer matches
were made using a paper Munsell chart with samples
every 0.25 Munsell Values. This matching target was
placed in front of the observer in an opagque box, so that
no light illuminating the standard papersfell on the com-
puter monitor. The observer looked down to see the
matching Munsell Value target and looked up to see the
test display. The data described here show results for a
minimum of four observations for one of the observers.
The average deviation for this observer for al fifty dis-
plays including controls was 0.28 Munsell Vaue units;
the maximum deviation was 0.55 units; the minimum
deviationwas 0.0 .

Controls

Figures laand 2aillustrate two control experiments. In
this paper the only observer§task wasto find amatch in
the Munsell Value scalefor the central gray square patch.
The first control patch varied the pixel value of the gray
patch in a white surround (pixel value 255). The second
control experiment used pixel value 140 for thegray patch
and varied the value of the uniform surround.

Obviously, when the experimenter decreased thedigi-
tal value of the central patch the observer matched itto a
darker Munsell Value. The experimenters chose the con-



Figure 1 demonstrates the change in lightness with luminance of the central test square in a uniform white surround.
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Figure 2 demonstrates the change in lightness with luminance of the surround around a constant test square.

Figure 3a demonstrates that the global average of the background does not control the lightness of the test patch. The
row showsa seriesof “ Show” displays made of the same pixel elements. There all have a central patch theis 32 by 32
pixels with a constant pixel value of 140. They all have a black background of 62,400 pixels (value 0). They all have
awhite surround of 2112 pixels (value 255). Thefirst display on theleft has 12 rectangular bands of white adjacent to
the gray test patch. The zone surrounding the test patch has a 1/1 white pixel fraction. In the second display the
adjacent zone hasa 1/2 white pixel fraction. The zoneisa checkerboard of black and white pixels. Inthethird display,
the adjacent zone has a 1/4 white pixel fraction. In the fourth display, the adjacent zone has a 1/9 white pixel fraction.

In the fifth display, the adjacent zone has a 1/25 white pixel fraction.

stant gray central patch (digital value 140) for the sur-
round experiment. With a white surround (digital value
255), the observer match was 5.19+0.44. With darker
surrounds the observer matched lighter Munsell Values.
Below digit 100 matchesreached an asymptote of Munsell
Value 8.0. The surround can influence the observer§
choice of match about of one-third of the range from white
to black.

Dispersion of White (“ Snow™)

Figure 3 shows the beginning of the series of constant
average displays. The target on the left has a 32 by 32
pixel central gray patch (digit value 140). Itissurrounded
by a 12 pixel band of white. The rest of the target is
black. The observer match was 6.50+0.39. The second
target rearranges the 2112 white pixels into a checker-
board pattern. Init, every other pixel iswhite. Thethird
target has 1 white pixel and three black pixels. Thefourth
target has one white pixel and 8 black pixels. The fifth
target has one white pixel and 15 black pixels. The sixth
target has onewhite pixel and 24 black pixels. The series
began with a solid band of white and progressively dif-
fused thewhite pixels. Theeffect on matcheswasto make
them lighter. Figure 3b plots the Munsell Value for the
targetsin Figure 3a.

Dispersion of 2112 White Pixels

8.00

Matching Munsell Value

Figure 3b plots the matching Munsell Value for the test
patches in Figure 3a. The solid white adjacent to the
gray test patch is matched by 6.50+0.39, while the 1/25
white pixel fraction was matched by 7.85+0.49. All
displays have identical global average or “ Grayworld”
value.

Cornersand Sides

Figure4 continuesthe series of constant average displays.
Thetarget on the left has the same 32 by 32 pixel central
gray patch (digit value 140). In Figure 4athe 2112 white
pixels form four squares on the diagonal of the target,
whilein Figure 4b the squares are adjacent to the sides of



Figure 4a shows effects of relocating the 2112 white pixels on the diagonals of the display. Here the white pixels are

shaped into four squares.

Figure 4b shows effects of relocating the 2112 white pixelsin squares on the sides of the gray test patch.
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Figure 4c plots the matching Munsell Value for the test
patchesin Figure4aand 4b. When the solid white squares
are adjacent to the corners of gray test patch, it was
matched by 6.50+0.20. When separated by 64 pixels it
was matched by 7.75#0.35. All displays have identical
global average value. When the solid white squares are
adjacent to the sides of gray test patch, it was matched by
6.13#40.43. When separated by 64 pixels it was matched
by 7.25+0.46. All displays have identical global average
value.

the gray. In the first target the white is adjacent to the
gray. Inthe second through fifth thewhiteis separated by
4, 8,16,32, and 64 pixels. The effect of separating the
white squares from the gray patch was that matches were
lighter.

Figure 4c plots the Munsell Value for the targets in
Figure 4a and 4b. The sides are have greater influence
than the corners for the same separation from 0 to 8 pix-
els, namely the observer matches are darker. At asepara-
tion of 16 pixelsthe match for side and corner are identi-
cal. At greater separationsthe sides have darker matches.

Lines

Figure 5 continuesthe series of constant average displays.
The target on the left has the same 32 by 32 pixel central
gray patch (digit value 140). In Figure 5athe 2112 white
pixels form lines parallel to the sides of the gray square.
The first target the white isa sold bad asin figure 3. In
the second through fourth targetsthe white lines are sepa-
rated by 1, 3, 7 black pixel lines (2,4,8 pixels per cycle).
The effect of separating the white lines was that matches
were lighter. Figure 5b plots the Munsell Value for the
targetsin Figure 5a. In addition data from two there tar-
getis platted. Thefifth display takesthe 8 pixel per cycle
pattern and move it 8 pixels from the gray. The sixth
target uses a vertical 8 pixels per cycle and an horizontal
2 pixels per cycle pattern.

Figure 5a shows the effects of relocating the 2112 white pixelsinto parallel stripeswith variable spacing.



Spacing of White Stripes
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Figure 5b plots the Matching Munsell Value for the test
patchesin Figure 5a. When the solid white surround was
adjacent to the gray test patch, it was matched by
5.64+0.39. When thewhite was broken up into alter nating
black and white stripes with 2, 4 and 8 pixels per cycle,
the matches were 6.31+0.24, 6.81+0,43, and 7.0020.35.
When the 8 pixel per cycle pattern was moved 8 pixels
away from the gray test patch, the match increased to
7.4440.13. When the display was 2 pixels per cycle
vertically and 8 pixels per cycle horizontally the match
was6.88+0.14. All displayshaveidentical global average
value.

Equivalent Background

The range of observer matches for the 27 patterns with
identical white gray and black pixel countsisfrom 7.85
t05.2519. This is2.6 lightnessunitson ascalein which
white is 9.6 and black is 1.5. Hence the surround with
identical average statistic can manipulate the matching
lightness one-third of the range between white and black.

One of the goals of this paper is to understand the
underlying mechanisms of the large changes in appear-
ance. Obvioudly, the spatial pattern of the white pixelsis
controlling the appearance. The mechanism, however, is
not at all obvious. Figure 6adisplaysthe set of different
surrounds that generated Munsell matches of 7.0. Inthe
control experiments, the digital value 199 in awhite sur-
round matchesMunsell 7.0. With the gray set to 140, the
surround digital value of 173 generates Munsell 7.0.

In the constant average statistic targetsthe following
targets have Munsell matches of 7.0:

A single white square of 2112 white pixels (1 side)

A dispersion fraction of 1/2

A corner square with 16 pixel separation

A side square pattern with 16 pixel separation

A line pattern of 8 pixels per cycle

A line pattern of 8 vert. and 2 horiz. pixels per cycle

Equivalent Backgrounds
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Figure 6a shows eight different displays with Matching Munsell Value = 7.0. The top left shows that in a white
surround the central test patch that matched by 7.0 had a digital value of 199. In all other displaysthe gray test patch
had a digital value of 140 and 2112 white pixels on 62,400 black pixel background. The asymmetrical square of white,
the 1/2 dispersion fraction, the 16 pixel cornersand sides separations, the 8 pixel cycle of stripesand the 8 vertical and
2 horizontal stripe patterns all acted as equivalent surrounds. They all made the 140 pixel value gray central patch
match 7.0 Munsell Value. In an all white surround the gray central test area (digital value 140) was matched by a
lightness of 4.94+0.43, whilein an all black surround it was matched by 7.59+0.60. The bottomrow plots of the spatial
frequency spectra of the five displaysin the middle row of Figure 6a.
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Figure 7 plots the “ Grayworld” global average for all
displaysvs. Matching Munsell Lightness. Herethedigital
values have been converted to average luminance. All
displays have the same pixel composition and global
average value. Observer matchesvary for a high of 7.85
toalow of 5.19. Global averageisnot a good predictor
of matching lightness.

Equivalent background pattern provide a challenge
to spatial models of vision. Namely, models that are de-
signed to calculate the appearance of lightness need to
generate identical predictions for the central gray patch
from these diverse spatial input targets.

The computational model candidates are:
Frameworks with depth planes and illuminants
GrayWorld
Spatid frequency filter modelsusingsingleMTF
Multichannel spatial frequency models
Pyramid processing

It is difficult to hypothesize that meaningful cogni-
tive frameworks for either illumination or depth planes
can be calculated from these displays. Theideal model
is one that only requires the array of pixel data, without
addition interpretation of image segments. It is difficult
to imagine the framework at controls variable lightness
from the concentration of snow. Itiseasy to seethat glo-
bal models would be unable to correctly predict the re-
sults of these experiments, e.g., GrayWorld- using the av-
erage of all luminances, or global maximum- normaliz-
ing by the single maximum value pixel in the entire im-
age.

Further, asimple model employing asinglefiltration
of spatial frequency energy distributionswill not account
for observer data. The bottom row in Figure 6 shows spa-
tial frequency spectra of the middle row of targets. It is
not obvious how a single filter will transform these in-
puts to equal outputs.

Results

Figure 8 shows the average values computed using very
simple boxcar averages of the average local luminance
Instead of GrayWorld@ve looked to GraySuburb@v-
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Figure 8 showstheresults of different partial spatial averages. Thefirst row reportsdifferent size averagesfor the 1 of
2 checkerboard surround. All averagesincluded one of thefour center gray pixels. Theleft box showsthat the 4 x4 pixel
average is 15.4% maximum luminance, followed by 8x8 average is 15.4%; 16x16 is 15.4%; 32 x 32 = 42.7% 64x64 =
15.8% and 128x128 = 5.6%. The second row reports different displays using only the 32x32 pixel average. All
averages included one of the four center gray pixels. The left box shows that the 42112 solid display average = 56.6%;
1 of 2 display = 42.7%; 1 of 4 = 24.1%; 1 of 9=14.8% 1 of 16 = 10.1% and 1 of 25 = 8..1%.

\
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Figure 8b plotsall sizes of local averagefor all “ Show” displays. Thisplot showsthat the biggest differencesin local
averagesarefoundinthe 32 by 32 sample. The average value fromsmaller sizesisdominated by the central gray. The
average value of the larger sizesis dominated by the large black background.

Matching Lightness vs. Average 32 pixel Block
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Figure 9a plots the 32x32 pixel average vs. matching
lightness for thesnowtargets, alongwith the* all white’
and “all black” backgrounds.. The black vertical line
shows the 15.4% average luminance of the gray center.
When the average value is greater than 15.4% the
matching lightnesses fall quickly with 32x32 average
luminances. Below 15.4% ,a lower slopeis observed.
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Figure 9b plots the 32x32 pixel average vs. matching
lightness for all the other targets. Diamonds plot the
“Show” displays; trianglesplot the constant gray center
with uniform gray surround (see Figure 2); circles plot
all of the constant global average displays. The vertical
error bars plot one standard deviation of the mean of
observer matches. There is no significant difference
between the plots of “ Show” and uniformgray surround.
Although the observer saw all theindividual white pixels,
the match for the gray center was the same as a uniform
gray with the same 32 x32 spatial average. Theremaining
data(circles) is very similar, but dlightly darker than the
diamonds and triangles. This suggests that 32x32 pixel
averages can be used to account for most, but not all of
the other data. Clearly theses displays have different
values in the 64x64 pixel averages.



erages. Figure8ashowstheaverageloca luminancewhen
varying the size of average for asingle display (top) and
varying the same size of average on variousdisplays (bot-
tom). The average values show considerable variability
despite the uniformity of the global statistic. Figure 8b
showsthat marked differncesin spatial averagesarefound
only in same sizes of averages.

Figure 9 plots the local average for al displays and
an all sizes of average. The largest variability isin the
32x32 pixel averages. In other words, the snow displays
have the most differentiable signal in the averages that
arethe same size asthe central square. Smaller averages
are dominated by the gray scale itself, while larger ones
are dominated by the very large black surround.

Plots of matching lightness vs. average 32x32 lumi-
nance show a characteristic curve (Figure 9a). Of special
interest is the fact that the plot of uniform grays fall on
that same curve (Figure 9b). Furthermore, plotsof all the
other displaysfall just below the snow and uniform back-
ground data. Thisindicatesthat the 32x32 average show
high but, not perfect correlation with observer matches.
These corners, lines and sides displays have different av-
erage signatures in the 64x64 displays and this may cor-
relate with the darker matches.

Discussion

Thedesign of these experimentswasthe collection of data
for future use in designing models. The intent was to
extend our understanding of how white pixels influence
appearance. Whites have been assigned many different
roles by frameworks, global normalization, determinates
of illuminants, etc. These experiments go along way to
indicatethat spatial averagein the same spatial frequency
range as the region of interest have an important role in
computational models of lightness. They also show that
snow and uniform backgrounds have an indistinguishable
effect on the lightness of a32x32 gray area. Despite the
visibility of the discrete single white pixels in the snow,
the observer make the match that correlates with the
32x32 pixel average. Figure 9 also shows that although
the other figureshave many different characteristics (lines,
corners, sides), they have almost the same spatial signa-
turein the 32x32 pixel averages.

These experiments are not intended to describe a
model. Rather, they identify the underlying spatial infor-
mation that isimportant to the human visual system. The
results indicate that pyramid processing in which spatial
comparisonsare madefirst within levelsand then between
levels can work well to model this data. Alternatively,
spatial frequency models that perform spatial compari-
sons within frequency channels, then combine channels
can also work well.

Future plans include using this technique for analy-
sisof multichannel influences on lightness matches. For
this we need to find equivalent backgrounds using dis-
plays with spatial energy distributions in more than one
spatial average domain. The really interesting question
is how channels combine and interact. Theplanisto use
equivalent spatial backgrounds to understand pyramid
level and frequency channel interactions.

Summary

This paper introduces the idea of equivalent background
for testing spatial models of human spatial vision. It de-
scribes 50 different test targets of which 27 have identi-
cal pixel image statistics. It identifies sets of targetswith
equivalent backgrounds and analysestheresult in light of
different approaches to modeling spatial vision.

The results showed that despite awide range of pat-
tern types (Snow, Corners, Sides Lines and asymmetry)
the observer matches showed very high correlation with
very simplespatia averages. Uniform gray surround with
the 32x32 spatia average were indistinguishable from
those of Snow. Despite the clear visibility of the single
white pixels, their influence asa surround was asthe same
as an equivalent uniform gray. There was no effect on
matching lightness from the clearly visible white Snow.
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