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Abstract

Contrast is the well-known observation in which a gray
in a white surround appears darker than in a black one.
An example is a 32 by 32 pixel gray area subtending 1.5
degrees visual angle on a black background - 256 pixels
on a side. The gray appears darker when surrounded by a
band of white - 12 pixels wide.  The white band is made
up of 2112 individual white pixels.  If these white pixels
are redistributed uniformly in the black background the
gray appears much lighter.  This paper measures the gray
appearance as influenced by 2112 white pixel in a 27 dif-
ferent spatial configurations.  The set of different spatial
patterns of white pixels that generate the same matching
lightness for gray are defined as equivalent backgrounds.
The paper then analyzes the spatial properties of equiva-
lent backgrounds.  Gray appears darkest when the white
surrounds the gray and is contiguous with it.   In the case
of the distributed white pixels, the gray appears lighter.
This paper presents an analysis of the spatial properties
of intermediate surrounds that give gray the equal visual
appearances.

Introduction

Spatial processing in human vision causes different ap-
pearances from identical retinal stimuli.1-5   Different spa-
tial configurations of surrounds can make  substantial
changes in appearance.  The goal of this paper is to mea-
sure the appearances of a wide range of different spatial
arrangements of an identical set of pixels.  By comparing
the results of observer matches, we can identify different
patterns of surround that have the same effect of the hu-
man spatial processing mechanism, namely the observ-
ers pick the same match.   Patterns that generate equal
matches for a constant test patch are defined as equiva-
lent backgrounds.

Sets of displays having equivalent backgrounds can
be used for analyzing different spatial models of vision.2,6-

25   A model that mimics the human visual process will be
able to correctly predict the spatial patterns that are equiva-
lent.

Experimental Procedure

Experiments have shown that distance from a white and
enclosure by a white changes the appearance of grays as
much as one third the range of white to black.26 ,27   Size
on the retina and spatial pattern can change similar pat-
terns from contrast to assimilation.28-29  This paper reports
experiments using 27 different spatial patterns all com-
posed of a central test patch (made up of 1024 light-gray
pixels) on a background (made up of 2112 white pixels,
62,400 black pixels).  These targets were computer gen-
erated and displayed on a CRT monitor viewed at a dis-
tance of 38 inches.  The square gray center element sub-
tends 0.75° and the entire 256 by 256 display subtended
5.9°.  The rest of the monitor screen was covered with
opaque material in a darkened room.  Observer matches
were made  using a paper Munsell chart with samples
every 0.25 Munsell Values.  This matching target was
placed in front of the observer in an opaque box, so that
no light illuminating the standard papers fell on the com-
puter monitor.  The observer looked down to see the
matching Munsell Value target and looked up to see the
test display.  The data described here show results for a
minimum of four observations for one of the observers.
The average deviation for this observer for all fifty dis-
plays including controls was 0.28 Munsell Value units;
the maximum deviation was 0.55 units; the minimum
deviation was 0.0 .

Controls

Figures 1a and 2a illustrate two control experiments.  In
this paper the only observerÕs task was to find a match in
the Munsell Value scale for the central gray square patch.
The first control patch varied the pixel value of the gray
patch in a white surround (pixel value 255). The second
control experiment used pixel value 140 for the gray patch
and varied the value of the uniform surround.

Obviously, when the experimenter decreased the digi-
tal value of the central patch the observer matched it to a
darker Munsell Value.  The experimenters chose the con-



stant gray central patch (digital value 140) for the sur-
round experiment. With a white surround (digital value
255), the observer match was 5.19±0.44.  With darker
surrounds the observer matched lighter Munsell Values.
Below digit 100 matches reached an asymptote of Munsell
Value 8.0.  The surround can influence the observerÕs
choice of match about of one-third of the range from white
to black.

Dispersion of White (“Snow”)

Figure 3 shows the beginning of the series of constant
average displays.  The target on the left has a 32 by 32
pixel central gray patch (digit value 140).  It is surrounded
by a 12 pixel band of white.  The rest of the target is
black.  The observer match was 6.50±0.39.   The second
target rearranges the 2112 white pixels into a checker-
board pattern.  In it, every other pixel is white.  The third
target has 1 white pixel and three black pixels.  The fourth
target has one white pixel and 8 black pixels.  The fifth
target has one white pixel and 15 black pixels. The sixth
target has one white pixel and 24 black pixels.  The series
began with a solid band of white and progressively dif-
fused the white pixels.  The effect on matches was to make
them lighter.  Figure 3b plots the Munsell Value for the
targets in Figure 3a.

Corners and Sides

Figure 4 continues the series of constant average displays.
The target on the left has the same 32 by 32 pixel central
gray patch (digit value 140).  In Figure 4a the 2112 white
pixels form four squares on the diagonal of the target,
while in Figure 4b the squares are adjacent to the sides of

Figure 1 demonstrates the change in lightness with luminance of the central test square in a uniform white surround.

Figure 2 demonstrates the change in lightness with luminance of the surround around a constant test square.

Figure 3b plots the matching Munsell Value for the test
patches in Figure 3a.  The solid white adjacent to the
gray test patch is matched by 6.50±0.39, while the 1/25
white pixel fraction was matched by 7.85±0.49.  All
displays have identical global average  or “Grayworld”
value.

Figure 3a demonstrates that the global average of the background does not control the lightness of the test patch.  The
row shows a series of “ Snow” displays made of the same pixel elements.  There all have a central patch the is 32 by 32
pixels with a constant pixel value of 140.  They all have a black background of 62,400 pixels (value 0).  They all have
a white surround of 2112 pixels (value 255).  The first display on the left has 12 rectangular bands of white adjacent to
the gray test patch.  The zone surrounding the test patch has a 1/1 white pixel fraction.  In the second display the
adjacent zone has a 1/2 white pixel fraction.  The zone is a checkerboard of black and white pixels.  In the third display,
the adjacent zone has a 1/4 white pixel fraction.  In the fourth display, the adjacent zone has a 1/9 white pixel fraction.
In the fifth display, the adjacent zone has a 1/25 white pixel fraction.



Figure 4a shows effects of relocating the 2112 white pixels on the diagonals of  the display.  Here the white pixels are
shaped into four squares.

Figure 4c plots the matching Munsell Value for the test
patches in Figure 4a and 4b.  When the solid white squares
are adjacent to the corners of gray test patch, it was
matched by 6.50±0.20.  When separated by 64 pixels it
was matched by 7.75±0.35.  All displays have identical
global average value.  When the solid white squares are
adjacent to the sides of gray test patch, it was matched by
6.13±0.43.  When separated by 64 pixels it was matched
by 7.25±0.46.  All displays have identical global average
value.

Figure 4b shows effects of relocating the 2112 white pixels in squares on the sides of the gray test patch.

Figure 5a shows the effects of relocating the 2112 white pixels into parallel stripes with variable spacing.

the gray.   In the first target the white is adjacent to the
gray.  In the second through fifth the white is separated by
4, 8,16,32, and 64 pixels.    The effect of separating the
white squares from the gray patch was that matches were
lighter.

Figure 4c plots the Munsell Value for the targets in
Figure 4a and 4b.  The sides are have greater influence
than the corners for the same separation from 0 to 8 pix-
els, namely the observer matches are darker.  At a separa-
tion of 16 pixels the match for side and corner are identi-
cal.  At greater separations the sides have darker matches.

Lines

Figure 5 continues the series of constant average displays.
The target on the left has the same 32 by 32 pixel central
gray patch (digit value 140).  In Figure 5a the 2112 white
pixels form lines parallel to the sides of the gray square.
The first target the white is a sold bad as in figure 3.  In
the second through fourth targets the white lines are sepa-
rated by 1, 3, 7 black pixel lines (2,4,8 pixels per cycle).
The effect of separating the white lines was that matches
were lighter.  Figure 5b plots the Munsell Value for the
targets in Figure 5a.  In addition data from two there tar-
get is  platted.  The fifth display takes the 8 pixel per cycle
pattern and move it 8 pixels from the gray.  The sixth
target uses a vertical 8 pixels per cycle and an horizontal
2 pixels per cycle pattern.



Equivalent Background

The range of observer matches for the 27 patterns with
identical white gray and black pixel counts is from 7.85
to 5.25 19.  This  is 2.6 lightness units on a scale in which
white is 9.6 and black is 1.5.  Hence the surround with
identical average statistic can manipulate the matching
lightness one-third of the range between white and black.

One of the goals of this paper is to understand the
underlying mechanisms of the large changes in appear-
ance.  Obviously, the spatial pattern of the white pixels is
controlling the appearance.  The mechanism, however, is
not at all obvious.  Figure 6a displays the set of different
surrounds that generated Munsell matches of 7.0.  In the
control experiments, the digital value 199 in a white sur-
round matches Munsell 7.0.  With the gray set to 140,  the
surround digital value of 173 generates Munsell 7.0.

In the constant average statistic targets the following
targets have Munsell matches of 7.0:

A single white square of 2112 white pixels (1 side)
A dispersion fraction of 1/2
A corner square with 16 pixel separation
A side square pattern with 16 pixel separation
A line pattern of 8 pixels per cycle
A line pattern of 8 vert. and 2 horiz. pixels per cycle

Figure 5b plots the Matching Munsell Value for the test
patches in Figure 5a.  When the solid white surround was
adjacent to the  gray test patch, it was matched by
5.64±0.39.  When the white was broken up into alternating
black and white stripes with 2, 4 and 8 pixels per cycle,
the matches were 6.31±0.24, 6.81±0,43, and 7.00±0.35.
When the 8 pixel per cycle pattern was moved 8 pixels
away from the gray test patch, the match increased to
7.44±0.13.  When the display was 2 pixels per cycle
vertically and 8 pixels per cycle horizontally the match
was 6.88±0.14.   All displays have identical global average
value.

Figure 6a shows eight different displays with Matching Munsell Value =  7.0.  The top left shows that in a white
surround the central test patch that matched by 7.0 had a digital value of 199.  In all other displays the gray test patch
had a digital value of 140 and 2112 white pixels on 62,400 black pixel background.  The asymmetrical square of white,
the 1/2 dispersion fraction, the 16 pixel corners and sides separations, the 8 pixel cycle of stripes and the 8 vertical and
2 horizontal stripe patterns all acted as equivalent surrounds.  They all made the 140 pixel value gray central patch
match 7.0 Munsell Value.  In an all white surround the gray central test area (digital value 140) was matched by  a
lightness of 4.94±0.43, while in an all black surround it was matched by 7.59±0.60.  The bottom row  plots of the spatial
frequency spectra of the  five displays in the middle row of Figure 6a.



Figure 7 plots the “Grayworld” global average for all
displays vs. Matching Munsell Lightness.  Here the digital
values have been converted to average luminance.  All
displays have the same pixel  composition and  global
average value.  Observer matches vary for a high of 7.85
to a low of 5.19.  Global average is not a good predictor
of matching lightness.

The computational model candidates are:
Frameworks with depth planes and illuminants
GrayWorld
Spatial frequency filter models using single MTF
Multichannel spatial frequency models
Pyramid processing

It is difficult to hypothesize that meaningful cogni-
tive frameworks for either illumination or depth planes
can be calculated  from these displays.  The ideal model
is one that only requires the array of pixel data, without
addition interpretation of image segments.  It is difficult
to imagine the framework at controls variable lightness
from the concentration of snow.  It is easy to see that  glo-
bal models would be unable to correctly predict the re-
sults of these experiments, e.g., GrayWorld- using the av-
erage of all luminances, or global maximum- normaliz-
ing by the single maximum value pixel in the entire im-
age.

Further, a simple model employing a single filtration
of spatial frequency energy distributions will not account
for observer data. The bottom row in Figure 6 shows spa-
tial frequency spectra of the middle row of targets. It is
not obvious how a single filter will transform these in-
puts to equal outputs.

Results

Figure 8 shows the average values computed using very
simple boxcar averages of the average local luminance
Instead of ÒGrayWorldÓ we looked to ÒGraySuburbÓ av-

Figure 8  shows the results of different partial spatial averages.  The first row reports different size averages for the 1 of
2 checkerboard surround.  All averages included one of the four center gray pixels. The left box shows that the 4 x4 pixel
average  is 15.4% maximum luminance, followed by 8x8 average is 15.4%; 16x16 is 15.4%; 32 x 32 = 42.7% 64x64 =
15.8% and 128x128 = 5.6%.  The second row reports different displays using only the 32x32 pixel average.  All
averages included one of the four center gray pixels. The left box shows that the 42112 solid display average = 56.6%;
1 of 2 display = 42.7%; 1 of 4 = 24.1%; 1 of 9=14.8% 1 of 16 = 10.1% and 1 of 25 = 8..1%.
\

Equivalent background pattern provide a challenge
to spatial models of vision.  Namely, models that are de-
signed to calculate the appearance of lightness need to
generate identical predictions for the central gray patch
from these diverse spatial input targets.



Figure 8b plots all sizes of local average for all “Snow” displays .  This plot shows that the biggest differences in local
averages are found in the 32 by 32  sample.  The average value from smaller sizes is dominated by the central gray. The
average value of the larger sizes is dominated by the large black background.

Figure 9a plots the 32x32 pixel average vs. matching
lightness  for the snow targets,  along with  the “all white”
and “all black” backgrounds..  The black vertical line
shows the 15.4% average luminance of the gray center.
When the average value is greater than 15.4% the
matching lightnesses fall quickly with 32x32 average
luminances.  Below 15.4% ,a lower slope is observed.

Figure 9b plots the 32x32 pixel average vs. matching
lightness  for all the other targets.  Diamonds plot the
“Snow” displays;  triangles plot the constant gray center
with uniform gray surround (see Figure 2); circles plot
all of the constant global average displays.   The vertical
error bars plot one standard deviation of the mean of
observer matches.  There is no significant difference
between the plots of “Snow” and uniform gray surround.
Although the observer saw all the individual white pixels,
the match for the gray center was the same as a uniform
gray with the same 32 x32 spatial average.  The remaining
data(circles) is very similar, but slightly darker than the
diamonds and triangles.  This suggests that 32x32 pixel
averages can  be used to account for most, but not all of
the  other data.  Clearly theses displays have different
values in the 64x64 pixel averages.



erages.  Figure 8a shows the average local luminance when
varying the size of average for a single display (top) and
varying the same size of average on various displays (bot-
tom).  The average values show considerable variability
despite the uniformity of the global statistic. Figure 8b
shows that marked differnces in spatial averages are found
only in same sizes of averages.

Figure 9 plots the local average for all displays and
an all sizes of average.  The largest variability is in the
32x32 pixel averages.  In other words, the snow displays
have the most differentiable signal in the averages that
are the same size as the central square.  Smaller  averages
are dominated by the gray scale itself, while larger ones
are dominated by the very large black surround.

Plots of matching lightness vs. average 32x32 lumi-
nance show a characteristic curve (Figure 9a).  Of special
interest is the fact that the plot of uniform grays fall on
that same curve (Figure 9b).  Furthermore, plots of all the
other displays fall just below the snow and uniform back-
ground data.  This indicates that the 32x32 average show
high but, not perfect correlation with observer matches.
These corners, lines and sides displays have different av-
erage signatures in the 64x64 displays and this may cor-
relate with the darker  matches.

Discussion

The design of these experiments was the collection of data
for future use in designing models.  The intent was to
extend our understanding of how white pixels influence
appearance. Whites have been assigned many different
roles by frameworks, global normalization, determinates
of illuminants, etc.  These experiments go a long way to
indicate that spatial average in the same spatial frequency
range as the region of interest have an important role in
computational models of lightness.  They also show that
snow and uniform backgrounds have an indistinguishable
effect on the lightness of a 32x32 gray area.  Despite the
visibility of the discrete single white pixels in the snow,
the observer make  the match that correlates with the
32x32 pixel average.  Figure 9 also shows that although
the other figures have many different characteristics (lines,
corners, sides), they have almost the same spatial signa-
ture in the 32x32 pixel averages.

These experiments are not intended to describe a
model. Rather, they identify the underlying spatial infor-
mation that is important to the human visual system.  The
results indicate that pyramid processing in which spatial
comparisons are made first within levels and then between
levels can work well to model this data.  Alternatively,
spatial frequency models that perform spatial compari-
sons within frequency channels, then combine channels
can also work well.

Future plans include using this technique for analy-
sis of multichannel influences on lightness matches.  For
this we need to find equivalent backgrounds using dis-
plays with spatial energy distributions in more than one
spatial average domain.  The really interesting question
is how channels combine and interact.  The plan is to use
equivalent spatial backgrounds to understand pyramid
level and frequency channel interactions.

Summary

This paper introduces the idea of equivalent background
for testing spatial models of human spatial vision.  It de-
scribes 50 different test targets of which 27 have identi-
cal pixel image statistics.  It identifies sets of targets with
equivalent backgrounds and analyses the result in light of
different approaches to modeling spatial vision.

The results showed that despite a wide range of pat-
tern types (Snow, Corners, Sides Lines and asymmetry)
the observer matches showed very high correlation with
very simple spatial averages.  Uniform gray surround with
the 32x32 spatial average were indistinguishable from
those of Snow.   Despite the clear visibility of the single
white pixels, their influence as a surround was as the same
as an equivalent uniform gray.  There was no effect on
matching lightness from the clearly visible white Snow.
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