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Abstract 

Many different descriptions of retinex methods of lightness 
computation exist. This paper provides concise MATLAB 
implementations of two of the spatial techniques of making 
pixel comparisons. The code is presented along with test 
results on several images and a discussion of the results.  
The paper also discusses the calibration of input images 
and the post-retinex processing required to display the 
output images.   

Introduction 

The retinex model1 for the computation of lightness was 
introduced by Land and McCann.9 Since that time Land 
and his colleagues have described several variants on the 
original method.16,12,5,13,20 The variants on retinex mainly aim 
to improve the computational efficiency of the model 
while preserving its basic underlying principles. 

Retinex calculations aim to calculate the sensory 
response of lightness. It is important to distinguish between 
physical reflectance, the sensation of lightness, and 
perceived reflectance, which are three distinct entities.  A 
single model can attempt to calculate only one of the 
three—the retinex goal is to calculate the sensation of 
lightness. Consider the case of two faces of  a white cube, 
one in direct sunlight and the other in shadow. Physical 
reflectance is a measure of a property of the cube’s surface 
relating its radiance to its irradiance.  

The reflectances of the two faces are identical. 
Sensations, on the other hand, are the appearances of the 
faces of the cube in the sun and the shade. To create the 
same appearances in a painting, a fine arts painter would 
mix white with a little yellow to make the sunny face, but 
use white with blue and a little black to reproduce the 
appearance of the shadowed face. These samples of 
different colored paints are measures of sensation.  Here 
the two faces are different.17 In comparison, the question of 

                                                        
1McCann [20] refers to these models as Ratio-Product-Reset-Average, but for 
simplicity here we call these operations the retinex model. Frankle and McCann [5] 
provide complete FORTRAN code for their algorithm with extensive discussion of 
image processing steps that follow spatial comparisons. 

the perceived reflectances of the cube’s surfaces involves 
cognition. It asks the observer to recognize the paint on the 
cube. Asked to repaint the cube, the observer is not 
confused by sun and shade, and would simply apply white 
paint. In terms of perception, the two faces of the cube are 
identical. In contrast, retinex calculates lightness 
sensations—it cannot be used to calculate physical 
reflectances or perceived reflectances. 

The first model designed to calculate lightness was 
described in Land’s Ives Medal Address to the Optical 
Society of America in 1968 and later published.9 This 
lecture included a working demonstration of a primitive 
electronic retinex camera. This was followed by 
publications and patents with additional details and 
improvements.5,10,11 McCann McKee and Taylor16 described 
a study of human color constancy that included color-
matching experiments, the details of the lightness model 
and successful results of modeling the experimental data. 
This result was further developed to show that there is no 
effect of cone pigment adaptation in color constancy.19 The 
retinex operators were selected for simplicity to mimic 
biological operators that sum, difference and rectify input 
signals to obtain spatial interactions. 

Dynamic range compression of real images was 
described in a patent by Frankle and McCann.5 This 
implementation used specialized hardware (International 
Imaging Systems I2S image processor with scrollable 8-bit 
image planes) for efficient image calculation. It described 
the idea that information from 2n pixels is accumulated 
after n steps of the process. This patent also described the 
multiresolution approach to retinex calculation used for 
computer applications.24,20 

Appropriate Input Data 

For testing the retinex model it is crucial that the data be 
calibrated in the sense that the image digit values must be a 
logarithmic function of scene radiance and they must be 
represented with sufficient precision. McCann18 used a 
slope 1.0 photographic film to capture real images 
(Ektachrome 5071 slide duplicating film).  He was able to 
measure an in-camera dynamic range of 3.5 log units. The 
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importance of the logarithmic function follows from 
Wallach’s experiments on appearance.23 He showed that 
equal radiance ratios generate equal lightness differences. 
A pair of papers, i.e., a 20% gray paper and a 100% white 
paper, have the same lightness difference in sun and shade.  
The pair also has a log10 edge difference of 0.7, regardless 
of illumination. If the input image data deviates from 
logarithmic, then the log10 edge difference for these papers 
will change with illumination, and the calculated lightness 
difference of the pair will change.  For retinex to work 
well, edge ratios, or log10 differences, within an object must 
be independent of illumination. Accurate logarithmic 
calibration guarantees this to be the case. 

The need for sufficient precision can be demonstrated 
by comparing two routes to the same scaling of an image.  
In one, we convert raw data to 8-bit log10 digits.  This 
represents the image well. In the other, we convert raw 
data to 8-bit linear and to 8-bit log10. The 8-bit linear stage 
truncates the information severely. Where the first 8-bit 
log10 processing assigns 82 digits to image shades between 
light gray and black, the second linear 8-bit processing 
assigns 1 digit  (See Table 1). One cannot take an existing 
8-bit image, apply a log to it and have meaningful image 
data for testing the retinex model. 

Nevertheless, retinex often enhances random images 
that have unknown and unknowable radiances for 
inputs.5,1,14 The process improves the visibility of dark 
objects while maintaining the visual discrimination of the 
light areas. Unlike lookup tables, which improve one range 
of radiance at the expense of others, retinex improves 
visual differentiation in all ranges of radiances. The danger 
is that artifacts such as noise create artificial edge 
information that is enhanced by retinex processing. The 
ability to bring out shadow detail is limited by image noise. 

Retinex Operators 

The original Land and McCann paper9 described four steps 
for each iteration of a retinex calculation:  ratio, product, 
reset and average. With the exception of reset13 these 
operators have remained the same over the years.  These 
operators are iteratively applied to an image, but the 
manner in which they are applied has varied. The focus of 
this paper is to list specific details of how these four 
operators are applied to the image. 

A fundamental concept behind retinex computation of 
lightness at a given image pixel is the comparison of the 
pixel’s value to that of other pixels. The main difference 
between the retinex algorithms is the way in which the 
other comparison pixels are chosen, including the order in 
which they are chosen. They use the same calculations but 
have dramatically different computational efficiencies in 
dealing with large real images. The original way of 
defining comparisons is by following a path, or set of 
paths, from pixel to neighboring pixel through the image.9 
Lightness estimates are accumulated along the path in a 
"sequential product" SP. SP starts as 1 and then is modified 
by multiplying it with the ratio of the next pair of pixels 

along the path. In the case of path following, path length 
affects the results substantially. Short paths mean the 
comparison is made only to others in a spatially localized 
group of pixels. Intermediate path lengths are to be used 
when modeling human vision. Infinite path lengths result 
in a degenerate case in which the output image is simply a 
scaled version of the input image. Infinite path lengths 
should not be used to model vision.2  

A "reset" step is a second important feature of retinex.  
Each time a comparison is made the SP is tested; if it 
exceeds 1.0, it is reset to 1.0. In this case, the value 1.0 
becomes the current lightness estimate.  A third aspect of 
retinex is the way in which lightness estimates obtained 
from different paths to a pixel are combined.  In earlier 
versions, retinex also included a "thresholding" step; 
however, it is not included in later versions20 and is not part 
of the Matlab implementations shown below. The  fourth 
step averages present values of the Product with previous 
ones. 

Implementations 

We have chosen two versions of retinex to implement. The 
first is a computer-based version described by McCann,20 
which we will refer to as McCann99 retinex. The second is 
an older specialized-hardware version,5 which we will call 
Frankle-McCann retinex. The two versions both replace 
path following with more computationally efficient spatial 
comparisons. McCann99 retinex creates a multi-resolution 
pyramid from the input by averaging image data. It begins 
the pixel comparisons at the most highly averaged, or top 
level of the pyramid. After computing lightness on the 
image at a reduced resolution, the resulting lightness 
values are propagated down, by pixel replication, to the 
pyramid’s next level as initial lightness estimates at that 
level. Further pixel comparisons refine the lightness 
estimates at the higher resolution level and then those new 
lightness estimates are again propagated down a level in 
the pyramid.  This process continues until New Products 
have been computed for the pyramid’s bottom level.  

In comparison, Frankle-McCann retinex uses single 
pixel comparisons with variable separations. An important 
difference between this method and that described in Land 
and McCann9 is that there are no paths. A single pixel 
eventually averages different products from all other 
pixels. The advantage of this structure, and also for the 
multi-resolution approach, is that long distance interactions 
are propagated with fewer comparisons. 

McCann99 Multi-Level Retinex Details 
For this implementation the input images must be of 

dimension w⋅2n by h⋅2n where w ≥ h and w and h are 
integers in the range 1 ≤ w, h ≤ 5. This constraint arises 
from the fact that each level of the image pyramid differs 
from previous levels by a factor of 2 in each dimension.  It 
is not a serious limitation in practice. 

The algorithm assumes that input digits are 
proportional to the logarithm of scene radiance and are of 
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meaningful precision. Using logarithms simplifies the 
computation of radiance ratios, which become simple 
differences. It also implies that when results from different 
spatial comparisons are averaged, the averaging is in log 
space and hence equivalent to a geometric mean. 

In the first step, the log image is averaged down to the 
lowest resolution level, which depending on the input 
dimensions will be of the size 1×1, 1×2, 1×3, 2×3, 3×4, 
3×5, 4×5 or 5×5. At each step the resolution level will be 
doubled. The number of layers in the pyramid depends on 
the size of the input image. The number of layers will be  
the greatest power of 2 dividing both the width and height 
of the input images as calculated by the function 
ComputeSteps. 

When the results (called “New Products”) at one level 
of dimension n-by-m have been computed, the values are 
then replicated to form an “Old Product” image of 
dimension 2n-by-2m. In our implementation, we pad the 
Old Product image with zeroes to simplify handling 
boundary conditions. These extra pixels are discarded at 
the end of the computation. 

At all levels the New Product, a precursor of 
calculated lightness, for each pixel is  computed by visiting 
each of its 8 immediately neighboring pixels in clockwise 
order. Each visit involves a ratio-product-reset-average 
operation,20 which is implemented by the function 
CompareWithNeighbor. It subtracts the neighbor’s log 
luminance (the ratio step) and then adds the result to the 
old product (the product step). If the result exceeds the 
maximum defined by Maximum, it is reset to Maximum 
(the reset step). Finally, the new product for the pixel 

obtained by comparison to its neighbor is averaged with 
the previous old product. 

A crucial parameter to the McCann99 algorithm is the 
number of times a pixel's neighbors are to be visited. In the 
code, this is set by nIterations. It controls the number of 
times the neighbors are cycled through, which as a result 
affects the distance at which pixels influence one another. 
This occurs because the New Product values for all pixels 
are being computed in parallel, so that after one iteration 
all neighboring pixels have had their New Products values 
updated. Hence, in the second iteration these new values 
involve information propagated from beyond a pixel’s 
immediate neighbors. In the limiting case of an infinite 
number of iterations, the algorithm converges to produce 
an output image that is simply the input image scaled by 
the image’s maximum value. A practical value for the 
number of iterations is 4. The final step is to scale the New 
Product values to make an estimated lightness (see Section 
“Scaling of retinex output to desired media and purpose”). 
In the case of color images, the function retinex_mccann99 
must be applied to each of the color channels 
independently. 

The code is based on MATLAB 5 (Version 5.1.0.421). 
For the reader unfamiliar with Matlab, the statement IP (IP 
> Maximum) = Maximum, which sets all values in matrix 
IP that are greater than Maximum to Maximum, 
demonstrates an important feature of the language; namely, 
that most of the functions and operators work on whole 
matrices applying the given function to all matrix 
elements. 

 

 

 

 

 

 
  

Matlab implementation of the McCann99 retinex 

Notation: 
L:    logarithmic input image 
nIterations:  number of iterations for each pixel 
nLayers:  number of pyramid layers 
OP:   matrix of Old Products for all pixels 
RR:   input radiance 
NP:   matrix of New Products for all pixels 
OPE:   OP padded with zeros for doing all computations at once 
RRE:   RR padded with two additional columns and two additional rows 
IP:    Intermediate Product computed with the Ratio-Product 

 

IS&T/SID Eighth Color Imaging Conference

114

IS&T/SID Eighth Color Imaging Conference Copyright 2000, IS&T



function Retinex = retinex_mccann99(L, nIterations) 
global OPE RRE Maximum 
[nrows ncols] = size(L);                             % get size of the input image 
nLayers = ComputeLayers(nrows, ncols);               % compute the number of pyramid layers 
nrows = nrows/(2^nLayers);                           % size of image to process for layer 
0 
ncols = ncols/(2^nLayers); 
if (nrows*ncols > 25)                               % not processing images of area > 25 
  error('invalid image size.')                      % at first layer 
end 
Maximum = max(L(:));                                 % maximum color value in the image 
OP = Maximum*ones([nrows ncols]);                    % initialize Old Product 
for layer = 0:nLayers 
   RR = ImageDownResolution(L, 2^(nLayers-layer));   % reduce input to required layer size 
    
   OPE = [zeros(nrows,1) OP zeros(nrows,1)];     % pad OP with additional columns 
   OPE = [zeros(1,ncols+2); OPE; zeros(1,ncols+2)];  % and rows 
   RRE = [RR(:,1) RR RR(:,end)];                     % pad RR with additional columns 
   RRE = [RRE(1,:); RRE; RRE(end,:)];       % and rows 
    
   for iter = 1:nIterations 
     CompareWithNeighbor(-1, 0);         % North 
     CompareWithNeighbor(-1, 1);         % North-East 
     CompareWithNeighbor(0, 1);         % East 
     CompareWithNeighbor(1, 1);         % South-East 
     CompareWithNeighbor(1, 0);         % South 
     CompareWithNeighbor(1, -1);         % South-West 
     CompareWithNeighbor(0, -1);         % West 
     CompareWithNeighbor(-1, -1);         % North-West 
   end 
   NP = OPE(2:(end-1), 2:(end-1)); 
   OP = NP(:, [fix(1:0.5:ncols) ncols]);             %%% these two lines are equivalent 
with  
   OP = OP([fix(1:0.5:nrows) nrows], :);             %%% OP = imresize(NP, 2) if using 
Image 
   nrows = 2*nrows; ncols = 2*ncols;                 % Processing Toolbox in MATLAB 
end 
Retinex = NP; 
 
function CompareWithNeighbor(dif_row, dif_col) 
global OPE RRE Maximum 
 
% Ratio-Product operation 
IP = OPE(2+dif_row:(end-1+dif_row), 2+dif_col:(end-1+dif_col)) + ... 
     RRE(2:(end-1),2:(end-1)) - RRE(2+dif_row:(end-1+dif_row), 2+dif_col:(end-1+dif_col)); 
      
IP(IP > Maximum) = Maximum;             % The Reset step 
 
% ignore the results obtained in the rows or columns for which the neighbors are undefined 
if (dif_col == -1) IP(:,1) = OPE(2:(end-1),2); end 
if (dif_col == +1) IP(:,end) = OPE(2:(end-1),end-1); end 
if (dif_row == -1) IP(1,:) = OPE(2, 2:(end-1)); end 
if (dif_row == +1) IP(end,:) = OPE(end-1, 2:(end-1)); end 
NP = (OPE(2:(end-1),2:(end-1)) + IP)/2;       % The Averaging operation  
OPE(2:(end-1), 2:(end-1)) = NP; 
 
function Layers = ComputeLayers(nrows, ncols)  
power = 2^fix(log2(gcd(nrows, ncols)));       % start from the Greatest Common 
Divisor    
while(power > 1 & ((rem(nrows, power) ~= 0) | (rem(ncols, power) ~= 0))) 
   power = power/2;             % and find the greatest common divisor  
end                  % that is a power of 2 
Layers = log2(power); 
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function Result = ImageDownResolution(A, blocksize) 
[rows, cols] = size(A);                              % the input matrix A is viewed as 
result_rows = rows/blocksize;                        % a series of square blocks 
result_cols = cols/blocksize;                        % of size = blocksize 
Result = zeros([result_rows result_cols]); 
for crt_row = 1:result_rows                          % then each pixel is computed as  
        
   for crt_col = 1:result_cols                       % the average of each such block 
      Result(crt_row, crt_col) = mean2(A(1+(crt_row-1)*blocksize:crt_row*blocksize, ... 
                                       1+(crt_col-1)*blocksize:crt_col*blocksize)); 
   end 
end 
 
 

 

Frankle-McCann Retinex 
Like McCann99 retinex, Frankle-McCann retinex 

computes long-distance interactions between pixels first 
and then progressively moves to short-distance 
interactions. In Frankle-McCann, the spacing between the 
pixels being compared decreases with each step. The 
direction between pixels also changes at each step, in 
clockwise order. At each step, the comparison is 
implemented using the Ratio-Product-Reset-Average 
operation. The process continues until the spacing 
decreases to 1 pixel. 

The original algorithm assumed the input image to be 
512x512. This followed the hardware design of the I2S. As 
a result, the initial spacing between pixels started at 256. 

We have generalized the algorithm slightly so that our 
implementation will work on an image of arbitrary size. In 
this case, the initial spacing (as encoded by the variable 
‘shift’) is computed as the largest power of 2 smaller than 
both of the input image dimensions. 

The function CompareWith(s_row, s_col) updates the 
current lightness estimate for a pixel using the ratio-
product-reset-average operation described above. In the 
case of McCann99, it is based on the pixel located at a 
distance of s_row, s_col. The square spiral path structure in 
this implementation means that when this function is 
called, one of the two parameters will always be zero. The 
original Frankle and McCann5 implementation had the 
option of either square or 8-direction comparisons. 

 

Matlab Implementation of Frankle-McCann retinex 
 
function Retinex = retinex_frankle_mccann(L, nIterations) 
global RR IP OP NP Maximum 
RR = L; 
Maximum = max(L(:));                                 % maximum color value in the image 
[nrows, ncols] = size(L); 
 
shift = 2^(fix(log2(min(nrows, ncols)))-1);          % initial shift 
OP = Maximum*ones(nrows, ncols)                      % initialize Old Product 
 
while (abs(shift) >= 1) 
   for i = 1:nIterations 
      CompareWith(0, shift);                         % horizontal step 
      CompareWith(shift, 0);                         % vertical step 
   end 
   shift = -shift/2;                    % update the shift 
end 
Retinex = NP; 
 
function CompareWith(s_row, s_col) 
global RR IP OP NP Maximum 
IP = OP; 
if (s_row + s_col > 0) 
 IP((s_row+1):end, (s_col+1):end) = OP(1:(end-s_row), 1:(end-s_col)) + ... 
 RR((s_row+1):end, (s_col+1):end) - RR(1:(end-s_row), 1:(end-s_col)); 
else 
 IP(1:(end+s_row), 1:(end+s_col)) = OP((1-s_row):end, (1-s_col):end) + ... 
 RR(1:(end+s_row),1:(end+s_col)) - RR((1-s_row):end, (1-s_col):end); 
end 
IP(IP > Maximum) = Maximum;              % The Reset operation 
NP = (IP + OP)/2;             % average with the previous Old Product 
OP = NP;                                             % get ready for the next comparison 
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Retinex Parameters  

All spatial operators use variable parameters to 
appropriately match their effects to input images. For 
example, this is true of unsharp masking, jpeg and retinex 
spatial operators. 

The purpose of unsharp masking is to change the 
spatial content in the image, particularly in the high-
spatial-frequency components. When successfully used the 
image looks sharper and free of artifacts. With 
inappropriate parameters the process will generate artifacts 
that are visible to the observer. If we compare the effects 
of a particular unsharp mask on same-size prints of  a 256-
by-256 digital image with the effects on an 2k-by-2k 
image, we see that they act very differently. A sharpening 
filter that is appropriate for the small image will have no 
effect on large images, while an appropriate filter for the  
large images will introduce artifacts in small ones. Given a 
print size and a viewing distance, one can optimize the 
shape of the filter kernel. The choice of sharpening kernel 
is selected so as to keep artifacts below visual threshold, 
which is a function of both spatial frequency,3 size of the 
display15 and light intensity of the display.22 

An analogous spatial dependence is found in jpeg 
compression where knowledge of human sensitivity to 
spatial information is used to reduce the number of bits for 
rendering a visually similar image.21 When we select a 
quality factor, we are controlling an underlying array of 
coefficients that filter the data so as to reduce the data 
needed to recreate the image. To make two same-size 
prints from a 256-by-256 versus a 2k-by-2k image, requires 
different jpeg coefficients. Any reduction in information 
will likely be visible in the small number-of-pixel image, 
while the larger image might well be compressed by 
factors of 10:1 or 20:1 without noticeable effect. The 
difference arises because the size and viewing distance 
control what information the observer can see in the final 
prints. Large digital files often contain more information 
than can be seen in a small print. This is the information 
that jpeg discards. As with unsharp masking the user 
specifies the spatial parameters to optimize performance 
and avoid artifacts. 

Retinex has parameters that are responsive to both 
spatial frequency and dynamic range of the input data. The 
number of iterations, as specified in the Matlab code by 
‘nIterations’, controls the amount of dynamic range 
compression and sets the stage for a different level of post-
processing by a postlut. The term “postlut” derives from 
historical use of image processing hardware using a lookup 
table.  Postlut processing simply refers to the application of 
a function f applied uniformly to every image pixel, 
I(x,y)=f(I(x,y), for all image locations (x,y). The effect of 
the number of iterations can be seen in Figure 1.  

As we can see the effect of the number of iterations is 
to reduce the contrast of the images as demonstrated by the 
smaller range in the histograms. The process moves the 

entire image into a smaller dynamic range, with smaller 
digit differences representing edge ratios. With very few 
iterations, the range of output digits is small. The postlut 
expansion (stretching of the image intensities) must be 
large to regenerate edge ratios appropriate for a print. With 
more iterations the range of output digits is larger. The 
postlut expansion will be moderate to regenerate edge 
ratios. With a very large number of iterations the range of 
output digits is large, approaching that of the input image. 
The postlut expansion must be small to none to regenerate 
edge ratios.  The amount of postlut expansion will vary 
with the amount of dynamic range compression. 

The examples of unsharp masking and jpeg 
compression demonstrated the need for selecting the right 
parameters to match viewing size and viewing distance.  
Analogously, the viewing distance, the viewing size, the 
dynamic range and noise level of the input image, the 
number of iterations, and the postlut are all important to 
make artifact-free retinex images.  

Scaling of Retinex Output to Desired Media 
and Purpose 

As shown in Figure 1, the contrast of the output is 
controlled by the number of iterations. This parameter can 
vary the output from radical to no dynamic range 
compression. The input data also plays a major role. The 
total dynamic range of input data determines the 
magnitude of radiance ratio associated with each digit. The 
final parameter is the postlut that matches the final new 
product with the output media. That media can be a printer, 
a monitor, a LCD display, a system profile, a 3-D plot of 
output at each pixel (output equal height), a pseudocolor 
image. The essential idea is that the input calibration 
controls the correlation between digital differences and 
radiances in the world. The number of iterations controls 
the degree of compression. The postlut controls the 
rendition of New Product digital differences in the output 
media. All three parameters are crucial to the process. All 
three share the control of the output image. They can be 
used only as well designed sets. They are not randomly 
interchangeable. 

Results on Test Images 

Figures 2 through 5 illustrate the behavior of the two 
algorithms. Figure 2 shows the behavior when the input is 
a simple square at the very center of the image. A slight 
asymmetry can be seen in both the McCann99 (using 4 
iterations comparing 8 nearest neighbors) and Frankle-
McCann (using 4 iterations of 4 directions) outputs. The 
McCann99 output shows the effect of processing the 8 
pixel neighbors in clockwise order. No postlut  has been 
applied to these images. 
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Figure 1 demonstrates the role of number of iterations and postluts. The first column shows the effect of spatial comparisons (ratio-
product-reset-average). The second column is the histogram of the images in the first column. The third column show images that have 
been stretched by a different postlut for each number of iterations. The first row shows the input log10 image scaled so that 3.5 log10 
units covers 0-255.  The sun half of the image is on the right and the shade half is on the left. The shade image is a lower radiance copy 
of the sun image. The histogram of this image is in the second column. The third column image is the same as first column,  illustrating 
that it has a slope 1.0 postlut. Output equals input. The second row shows an output image using one iteration, with its histogram. Here 
the output dynamic range has been compressed into the top 25% of the 0-255 digit range.  A slope 4.0 linear postlut will stretch the 
first column image to render contrast in the sun properly. It is very steep and generates artifacts. The third row shows the output for 
four iterations, and its histogram. Here the range data has been compressed from 3 log units to 1.5.  A slope 2.0 postlut has only to 
expand the data from 128 to 0. The fourth row shows the output for 128 iterations and its histogram. There is only a 25% compression.  
A slope 1.5 postlut will be very gentle; however, the improvement of the shadow detail in the third column output image is minimal.  In 
this figure we used simple linear postluts to illustrate how calibration, number of iterations and postlut work together. To optimize the 
image these postluts should be shaped so as to take into account the response of the output device and the tone reproduction curve 
desired. (See Appendix II & III of Frankle and McCann for details5). 
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Figure 2. Effect of McCann99 processing on input of a single bright square against a black background.  In the limiting case of the 
square being a single pixel, this is analogous to the point spread function for the algorithm, but it must be noted that because of the 
reset step, the shape of this function varies depending on the image content.  From left to right we have: input image, McCann99  
4-iteration output, Frankle-McCann 4-iteration output. 
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Figure 3. Logvinenko cubes pattern illusion. As shown on the left, the input values of the cube tops are equal despite the fact that we 
see them as unequal. McCann99 4-iteration retinex output values are shown on the right. 

 
Measure log 10 image           
 Min           Max 

Object in image Shade            
 Black           White 

Radiance 1           3162 
log10 Radiance 0.00            

256 equal log 0.00 0.01 1.13 1.58 1.70 1.80 2.10 2.40 2.70 3.01 3.31 3.50 
256 equal ratios 1.00 1.03 13.35 37.88 50.35 62.81 126 252 506 1014 2032 3162 

Digit 0 1 82 115 124 131 153 175 197 219 241 255 

Convert linear 8-bit image to log10          
 Min            

Object in image Shade   Sun         
 Black  Lt.Gray Black Dk. Gray   Mid gray  White 

Radiance 1.00           3162 
256 equal differences 1.00  13.40 38.19 50.59 62.99 125 249 497 993 1985 3162 

log10 Radiance 0.00  1.13 1.58 1.70 1.80 2.10 2.40 2.70 3.00 3.30 3.50 
digit 0  1 3 4 5 10 20 40 80 160 255 

Table 1. The data in this table describes the care one must take in preparing input images. The data comes from the image of two test 
targets: one in sun, the other in shade (See Figure 1). The top box demonstrates the digitization of raw image data as equally spaced 
log10 increments. The bottom box demonstrates the digitization of raw image data as equally spaced 8-bit linear increments, 
subsequently converted to log10. Equal log increments divide the image into equal ratio steps of 1.0321, while equal linear increments 
divide it into equal radiance differences of 13.3971. The ratio increments represent the image well, while the linear increments severely 
truncate the meaningful data. The first and last columns show the dynamic range of the scene. The “Object in image” row identifies 
that the minimum (Min) corresponds to the black patch in the shade and the maximum (Max)  that corresponds to the white patch in the 
sun. In both boxes, minimum relative radiance is 1.0 with a log10 radiance of 0.00 and a digit value of 0.  Maximum radiance is 
3162.28, log10 radiance is 3.50, and has a digit value 255. In the top box, the row “256 equal log” digitizes input radiances into 256 
equal log increments .The row “256 equal ratios” converts this back to linear values. Column “Min” shows the starting point. The next 
column shows that  digit 1 corresponds to 0.01 log10 and 1.03 linear. In the bottom box, the row 256 equal differences digitizes input 
radiances into 256 equal linear increments. The row “log10 Radiance” converts this to log10 values. Column “Min” shows the starting 
point. The third column shows that digit 1 corresponds to 1.13 log10 and 13.40 linear. Looking up to the top box shows that the 1.13 
log10 corresponds to digit 82.  The top box divides 1 linear digit into 82 log10 digits. The linear digits compress all the shade information 
from light gray to black into 1 digit. The remaining columns match Log10 radiance values and demonstrate the very poor use of digits 
when converting 8-bit linear digits to log digits. 

IS&T/SID Eighth Color Imaging Conference

119

IS&T/SID Eighth Color Imaging Conference Copyright 2000, IS&T



 

 

Figure 3 shows Logvinenko's gradient experiment 
which generates a large lightness change between the 
diamonds. A vertical sinusoidal gradient in non-diamond 
areas creates the illusion. The numbers on the left side of 
Figure 3 show that the input digits for the light and the 
dark diamond faces are both 139. The numbers on the 
right show the output from the corresponding faces to be 
152 and 163 after McCann99 4-iteration processing. 
McCann20 reports that  “Retinex models can predict 
appearances that were previously attributed to cognitive 
behavior.” Figure 4 shows pseudocolor renditions of 
input (left) and output (right) of the Logvinenko illusion.  
The diamond shaped tops of the cubes are equal on the 
left and unequal on the right. It is interesting to note, that 
the upper faces of the output cubes are not uniform. 

Figure 5 shows the effect of McCann99 applied to a 
color image with a substantial blue color cast. The 
algorithm has been applied to each of the color channels 
independently. Clearly, in this case the color cast has 
been removed. Retinex differs from many color 
constancy methods in that it does not aim to find a single 
chromaticity for the scene illumination as is the case, for 
example, in the neural network [6] and color by 
correlation [4] methods. Retinex instead adjusts the 
image colors in a non-global manner as is necessary 
since the model attempts to match human visual 
response. Some effects of this can be seen in the way 
that in Figure 5B some of the green bleeds into the white 
area surrounding the “C”  in “Compiler,” and the way 
the blue is darkened near the white lettering on the right-
hand blue book. 

Conclusions 

We have presented new, very concise Matlab 
implementations2 of two of the main practical retinex 
algorithms. Our hope is that this will eliminate much of 
the variability in what is meant when different 
researchers refer to retinex and thereby facilitate further 
rigorous testing and discussion of the method.  For 
modeling human vision these Matlab programs depend 
on calibrated input data. Although these Matlab 
programs provide the details of how pixels are compared 
and processed during the ratio-product-reset-average 
steps of retinex processing, they do not provide details 
on the selection of an appropriate postlut for a particular 
output device. The postlut must be provided by the 
reader. 
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Legend 

255 248 239 232 223 216 207 200 191 184 175 168 162 152 149 147 145 142 120 104 95 88 

Figure 4. Pseudocolor representation of a portion of the Logvinenko cubes input (left) and McCann99 4-iteration output (right). Note
that despite the fact the upper cube faces on alternating rows appear to differ in intensity, the top faces of all the cubes are in fact both
uniform and equal. In the output, however, the top faces of the cubes are no longer equal nor are they completely uniform.

Figure 5A

Figure 5B

Figure 5C 

Figure 5: A: Input with blue color cast created by scene illumination for which the camera was not balanced. The image also has
extended dynamic range obtained by frame averaging. B: Output from the McCann99 4-iteration. C: Output from the Frankle-McCann
4-iteration. The results here can be compared with those of Barnard [1]. Note that both the input and output images have been adjusted
with postluts for printing.  The actual retinex input image is in log space.
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