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1 Topics
We studied color constancy of two 3-D Color Mondrian displays made of two identical 
painted wooden shapes.  We used on 6-chromatic, and 5-achromatic paints applied to 100+ 
block facets. The three-dimensional targets adds shadows and multiple reflections not found 
in flat Mondrians.  Observers viewed one set in nearly uniform illumination [Low-Dynamic-
Range(LDR)]; the other in directional non-uniform illumination [High-Dynamic-
Range(HDR)]. Both 3-D Mondrians,  were viewed simultaneously, side-by-side.  We used 
two techniques to measure how well the appearances correlated with the objects’ 
reflectances.  First, observers made magnitude estimates of changes in the appearances of 
surfaces having identical reflectances.  Second, an author painted a reproduction of the pair 
of Mondrians using watercolors.  We measured the watercolor reflectances to quantify the 
changes in appearances. Both measurements give us important data on how reflectance, and 
illumination affect color constancy.  While universal constancy generalizations about 
illumination and reflectance hold for flat Mondrians, they do not for 3-D Mondrians.  A 
constant paint does not exhibit perfect color constancy,  but rather shows significant shifts in 
lightness,  hue and chroma in response to nonuniform illumination.   The results show that 
appearance depends on the spatial information in both the illumination and reflectances of 
objects.  



2 Color Constancy and Appearance
The psychophysics of color constancy has been studied for nearly 150 years. In fact, 
there are a number of distinct  scientific problems incorporated in the field.  These 
studies ask observers distinctly different questions and get answers that  superficially 
seem to be contradictory.  The computational models of color constancy for 
colorimetry, sensation, and perception are good examples.  The Optical Society of 
America used a pair of definitions for sensation and perception that followed along 
the ideas of the Scottish philosopher Thomas Reid.  Sensation is 'Mode of mental 
functioning that is directly associated with the stimulation of the organism' (OSA,
1953).  Perception is more complex, and involves past experience.  Perception 
includes recognition of the object.  It is helpful to compare and contrast these terms 
in a single image to establish our vocabulary as we progress from 18th century 
philosophy to 21st century image processing. Figure 13-1 is a photograph of a raft, 
-- a swimming float -- in the middle of a lake (McCann and Houston 1983, McCann 
2000).  The photograph was taken in early morning: the sunlight fell on one face of 
the raft, while the skylight illuminated the other face.  The sunlit  side reflected 
about 10 times more 3000°K light than the 20,000°K skylight side.  The two faces 
had very different radiances, and hence very different colorimetric values. 

Figure 13-1. Photograph of raft.

For sensations, observers imagined selecting the colors they see from a lexicon of 
color samples, such as the Munsell Book or the catalog of paint  samples from the 
hardware store. The question for observers was to find the paint sample that a fine-
arts painter would use to make a realistic rendition of the scene.  Observers said that 
a bright white with a touch of yellow looked like the sunlit  side, and a light  gray 
with a touch of blue looked like the skylit  side.  The answer to the sensation 
question was that the two faces were similar, but different.

For the perceptions, observers selected the colors from the same catalog of paint 
samples, but with a different  question. The perception question was to find the paint 
sample that a house painter would use to repaint  the raft the same color. Observers 
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selected white paint. They recognized that  the paint on the raft is the same despite 
different  illuminations. The perception question rendered the two faces identical. In 
summary, the raft faces are very different, or similar, or identical depending on 
whether the experimenter is measuring colorimetry, or sensation, or perception.  We 
need completely different  kinds of image processing in order to model these three 
questions. Colorimetry models predict receptor responses; sensation models predict 
the color appearance; and perception models predict  the observer’s estimate of the 
object’s surface. 

Following discussions of the raft  picture, subsequent experiments asked the same 
question, using a slightly different vocabulary (Arend and Goldstein, 1987;  Arend 
et. al., 1991).  They found the same result. Namely, observer’s responses depended 
on the observers’ psychophysical task. 

3 Color Constancy Models
Human color constancy involves the content  of the scene.  It  depends on the 
reflectances of objects, the spectral content  and the spatial distribution of the 
illumination, and the arrangement of the scene.   There are a number of models of 
color constancy used to predict  colors from the array of radiances coming to the 
eye, or the camera.  They not only use a variety of image processing assumptions, 
they have different sets of required information, and different goals for the model to 
calculate. Table 13-1 lists the names of 5 types of models, their goals (result  of the 
calculation), their required information (inputs to calculation), and references. 
(Table 13-1, row 1).

Retinex
Land’s Color Mondrian (Land and McCann 1971a) used a flat array of matte 
colored papers.  He varied the amounts of uniform R, G, and B illumination over 
the entire array of more than 100 papers.  He measured the light  coming from a 
paper, then moved to a second paper and changed the illumination so that  the 
second paper sent  the same stimulus at  a pixel to the eye.  This experiment 
demonstrated that identical retinal stimuli generate all colors.  A red paper still 
looked red when its illumination was altered so that it was the same light stimulus 
as a green paper.   The quanta catch of the retina at  a pixel does not correlate with 
appearance.  Color constancy measurements showed that color appearance 
correlates with the scaled integrated reflectance of the paper in Land’s Color 
Mondrian (McCann et al. 1976).  This work calculated the paper’s appearance using 
spatial comparisons.  Further, it showed that the spatial comparison model predicted 
observer matches. The measured discrepancies from perfect constancy were 
predicted by crosstalk between the cone sensitivity spectra.

Land’s Retinex model simply requires, as input, the spectral radiances at  each pixel 
in the field of view.  Its goal is to calculate the appearance of all colors in the scene.  
It  builds color appearances out  of spatial comparisons.  Land said '... the function of 
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retinex theory is to tell how the eye can ascertain reflectance in a field in which the 
illumination is unknowable and the reflectance is unknown.' (Land and McCann 
1971). Later retinex papers restated the language using edges and gradients, instead 
of illumination and reflectance.  This was a result of studies of real life scenes in 
which: gradients in reflectance are difficult  to see, and shadows with abrupt  edges 
in illumination are highly visible (McCann 1999, 2004) (Table 13-1, row 2).

Table 13-1 lists five classes of color constancy models.  The first two columns list the names 
and the goals of the model’s calculation. The third column identifies the information from 
the scene required to do the calculation. The fourth column lists references that describe the 
details of the calculation. 

CIELAB and CIECAM
In the late 19th century, discussions of constancy began with the appearances of 
objects in different spectral illuminations.  In 1872 Hering wrote 'The approximate 
constancy of the colors of seen objects, in spite of large quantitative or qualitative 
changes of the general illumination of the visual field, is one of the most 
noteworthy and most  important facts in the field of physiological optics. Without 
this approximate constancy, a piece of chalk on a cloudy day would manifest  the 
same color as a piece of coal does on a sunny day, and in the course of a single day 
it would have to assume all possible colors that lie between black and 
white.' (Hering, 1905). Helmholtz proposed the idea that humans discount the 
illumination, (Helmholtz,1866) so that  appearances correlated with recognizing the 
object, namely its reflectance.  This principle is incorporated in pixel based color 
appearance models such as 1976 CIELAB and 2004 CIECAM (CIE, 1978; 2004).
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These models use physical measurements of the illumination to normalize radiances 
from objects and remove the spectral information contained in the illumination.  
These models cannot predict color appearance without measurements of 
illumination at  the pixel of interest as input.  CIECAM requires that  the user assign 
four scene-dependent coefficients c, Nc, FLL, and F, based on viewing conditions 
(Hunt, 2004). (Table 13-1, row 3). 

Computer Vision
Computer Vision models work to remove the illumination measurement  limitation 
found in CIE colorimetric standards by calculating illumination from scene data.  
The image processing community has adopted this approach to derive the 
illumination from the array of all radiances coming to the camera. Since estimating 
the illuminant from pixel array is a multidimensional ill-posed problem, computer 
vision models need to apply some constraints on the scene.  These constraints can 
regard spectral content or geometry of the illuminant, statistic of reflectance, etc. 
For example, one of the assumptions used in many Gray-World algorithms, is that 
scenes have a constant average reflectance.  If true, then Gray-World algorithms can 
use the average radiance of all pixels to measure the spectral distribution of the 
illuminant.  

As long as the illumination is constant  for all pixels in the scene, then each pixel’s 
radiance divided by the calculated illumination will equal that  pixel’s reflectance.   
Computer-vision models measure success by how well they can calculate an 
object’s reflectance in different spectral illuminants.   In order to use these models 
in a discussion about human vision, we need to perform a separate psychophysical 
experiment to test  whether appearances correlate with reflectance for the image in 
question.  One should not  use such models for vision in situations where appearance 
deviates from reflectance.  These models often assume perfect  color constancy 
which is quite different  from the approximate constancy found in humans.  This 
field has been studied by Richards, Buchsbaum, Marr, Horn, Z’Mura, Adelson, 
Sinha, Pentland, Funt, Drew, Finlayson, Hubel, Hordley, and many others. 
(Richards, 1988; Horn, 1974; Buchsbaum, 1980; Marr, 1982; Funt  and Drew, 1998; 
Sinha and Adelson, 1993; Adelson and Pentland,1996; D’Zmura and Iverson, 1993, 
1993b; Finlayson, Hubel, and Hordley, 1997; Rutherford and Brainard, 2002; 
Purves and Lotto, 2003)  A summary of this approach is found in  Ebner 2007). 
(Table 13-1-row 4) 

Surface Perception 
Surface Perception algorithms study and model the observer’s ability to recognize 
the surface of objects.  Following Hering’s concern that chalk should not be 
mistaken for coal, the objective is predict  human response to questions about 
recognizing an objects surface.  Here the subjects are asked the house painter’s 
question.  What  paint  is on the surface?  Techniques include the analysis of cues 
from specular reflections and Bayesian inference of the scene.  This field has been 

HDR and Appearance



studied by Helson, Gilchrist, Lee, Maloney, Foster, Brainard, Freeman, Zaidi, Bloj, 
Ripamonti, Yang, and many others. (Helson 1947, 1964; Gilchrist, 2006: Lee, 1986; 
Maloney and Wandell, 1986; Bloj et al., 1999: Ripamonti et al., 2004; Yang and 
Maloney, 200; Yang and Shevell, 2003: Brainard and Maloney, 2004; Smithson and 
Zaidi, 2004; Brainard et.al., 2006; Foster et. al., 2009, Helson, 1947, 1964; believed 
that the complex visual image generated a ' pooled effect of all stimuli' , to which 
the organism was ' attuned or adapted' .  Helson’s level of reference is centrally 
stored and used as reference for all judgments Many elements of the visual 
environment  are suggested to play a role in such a global normalization factor, such 
as visual pigment adaptation, the history of reflectances in the field of view, and 
temporal distribution of cues (Smithson and Zaidi 2004). See Brainard and 
Maloney, (2004) for summary (Table 13-1, row 4).

Spatial Color Synthesis Algorithms
The last  row in the Table 13-1 cites the Spatial Color Synthesis (SCS) family of 
algorithms.  SCSA is a term that groups together a set of algorithms derived from 
the Retinex model.  The common point  of this group is that computations build up 
appearances from the spatial information in the scene.  They start  with the quanta 
catch of the sensor pixel and apply spatial computations to make new image 
renditions, as does human vision. The SCSA family includes all the various Retinex 
implementations that  can differ quite remarkably in the way they transform the 
image and apply spatial processing. They include other algorithms that recompute 
spatial relationships in alternative ways (e.g. ACE or RACE) [Rizzi et  al. 2003, 
Provenzi et al. 2008].  They include image domain ratio-products, frequency based 
spatial filters, and bilateral filters. They all are nonlinear spatial transforms of the 
receptor quanta catch.  In general these algorithms are applied to captured scene 
luminance so as to render the scene data with improved image quality.  SCSA have 
been studied by Land, McCann, Frankle, Rizzi, Marini, Gatta, Sobol, Kotera, 
Hurlburt, Funt, Drew, Fairchild, Johnson, Kimmel, Elad, Durand, Casseles, 
Bertalmio, Provenzi, Ramponi, Jobson, Rahaman, Woodell, Morel, Belen, 
Susstrunk, and many others (Land and McCann 1971b, 1972, Frankle and McCann 
1983; Land, 1986; Funt and Drew, 1988; Jobson et al. 1997; Rizzi et  al. 2002, 2004, 
2004; Gatta et al. 2006; 2007; Marini et  al. 1999; Marini and Rizzi, 2000; Sobol and 
McCann, 2002; Sobol, 2004; Provenzi et  al. 2005, 2007, 2008; Wang, Horiuchi and 
Kotera, 2007; Funt, et. al. 2004; Kuang et  al.  2007; Hurlbert, 2002; Kimmel and 
Elad, 2003,; Saponara et  al. 2007; Paris and Durand, 2009; Bertalmio et al.2007; 
Morel et  al. 2009; Meylan and Susstrunk 2004, 2006, Reinhard, et al, 2006). See 
Rizzi and McCann 2007 for a description (Table 13-1, row 6).

All five models listed in Table 13-1 do well with their predictions in the flat 
uniformly illuminated Color Mondrian.  The experiments in this paper present a 
different  set  of requirements for color appearance models.  Here, with a restricted 
set of reflectances and highly variable illumination, we have more information to 
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help sort out the importance of reflectance and illumination, as well as edges and 
gradients in modeling human vision.

4 Changes in Appearance from Changes in Illumination
The experiments in this chapter are designed to study the interplay of reflectance, 
illumination and spatial content in human color appearance (sensation).

Figure 13-2 (left) Low-dynamic-range (LDR) scene, (right) High-dynamic-range (HDR) scene.

We replaced the flat  array of color papers used in Land’s Mondrian (Land and 
McCann, 1971a) with a collection of three-dimensional painted blocks.  We 
replaced the 100 plus color papers used in Land’s Mondrian with eleven 
reflectances: 6 chromatic and 5 achromatic.  We replaced the spatially uniform 
illumination with a pair of different  illuminant configurations: one as uniform as 
possible, and the other highly directional and with different  emission spectra.  The 
uniform illumination has a low dynamic range (LDR), while the directional one has 
a high dynamic range (HDR) (Parraman et. al. 2009)  While Land used many 
reflectances to make a complex array of radiances, we used the shadows and 
gradients created by the 3-D objects to generate complexity. The three-dimensional 
nature of these test  targets adds shadows and multiple reflections.  These properties 
enrich the targets and make them more like real scenes. Here we measure the effects 
of illumination on constant reflectances.  Human vision models can take advantage 
of this data to assess how well their predictions match appearances. 

Two identical 3-D Mondrians
The experiment  used two identical sets of objects in uniform and in non-uniform 
illumination in the same room at the same time.  We painted each of the flat 
surfaces with one of eleven different paints (R, Y, G, C, B, M, W, NL, NM, ND, K).  
Figures 13-2 shows photographs of the two parts of the scene. 
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Figure 13-3 (left) shows a circular test target with 11 painted sections.  Figure 13-3 
(right) lists the Munsell chip closest to each paint, evaluated in daylight, and the 
measured Yxy in LDR light.

Figure 13-3 shows the flat painted test target; the paint designations, the Munsell 
designation and Y,x,y values

Characterization of LDR and HDR Illuminations
Above, in Figure 13-2 (left) we see a photograph of the LDR Mondrian in 
illumination that  was as uniform as possible.  The blocks were placed in an 
illumination cube. It  had a white floor, translucent top and sides, and a black 
background.  We directed eight  halide spotlights on the sides and top of the 
illumination cube.  The combination of multiple lamps with the same emission 
spectra, light-scattering cloth and highly reflective walls made the illumination 
nearly uniform.  Departures from perfect uniformity came from shadows cast by the 
3-D objects, and the open front of the cube for viewing.  

Figure 13-2 (right) is a photograph of the HDR Color Mondrian illuminated by two 
different  lights.  One was a 150W tungsten spotlight  place to the side of the 3-D 
Mondrian at the same elevation. It  was placed 2 meters from the center of the target.  
The second light was an array of WLEDs assembled in a flashlight.  It stood 
vertically and was placed quite close (20 cm) on the left.  Although both are 
considered variants of white light they have different emission spectra. The 
placement of these lamps produced highly non-uniform illumination and increased 
the dynamic range of the scene (McCann, et. al., 2009a, 2009b).

In the HDR 3-D Mondrian, the black back wall had a 10 cm circular hole cut in it.  
Behind the hole was a small chamber with a second black wall 10 cm behind the 
other. We placed the flat circular test target on the back wall of the chamber.  The 
angle of the spotlight was selected so that  no direct light fell on the circular target.  
That target  was illuminated by light  reflected from the walls of the chamber.  The 
target  in the chamber had significantly less illumination than the same paints on the 
wooden blocks.  The target  in the chamber significantly increased the range of the 
non-uniform display.  However, human observers had no difficulty seeing the 
darker circular target. 
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One way of assessing the uniformity of illumination is to make a third set  of blocks, 
all painted middle grey.  We photographed this actual Gray-World in the LDR 
lighting geometry (Figure 13-4, left).  It  shows that with 3-D objects uniform 
illumination is extremely difficult  to achieve.  Despite the use of 8 light  sources and 
light diffusers, the three-dimensional objects cast  faint shadows on other block 
faces.  Perfectly uniform illumination requires that  the object be in the center of a 
perfect integrating sphere.  The Gray-World under HDR lighting geometry (Figure 
13-4, right) shows a much wider range of luminances and apparent lightnesses.

Figure 13-4 (left) LDR Gray-World 3-D Mondrian; (right) HDR. The same gray Mondrian 
blocks shows that directional illumination can change a pixel’s radiance and appearance.  
The camera digits in HDR illumination are as high as 210, while in the shadows they are as 
low as 3.

5 Magnitude Estimation Measurements
Observers compared the HDR and LDR 3-D Mondrians (McCann, Parraman and 
Rizzi 2009A, 2009B).  They were given a four-page form that identified a selection 
of 75 areas in the displays.  The observers were shown the painted circular test 
target  (Figure 13-2 left) placed on the floor of the display, in uniform light.  This 
standard was explained to be the appearance of 'ground truth'.  They were told that 
all the flat surfaces had the same paints as the standard. 
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Figure 13-5 (left) shows the ' ground truth'  reflectance samples and illustrates the strategy 
for magnitude estimation of hue shifts; (center) lightnesses; (right) chroma. 

Observers were asked if the selected areas had the same appearance as ' ground 
truth'.  If not, they were asked to identify the direction and magnitude of the change 
in appearance.  The observers recorded the estimates on the forms. Observers were 
asked to estimate hue changes starting from each of the six patches of colors [R, Y, 
G, C, B, M]. Participants were asked to consider the change in the hue as a 
percentage difference between the original hue, e.g. R, and the hue direction Y.  For 
example, 50%Y indicates a hue shift to a color halfway between R [Munsell 2.5R] 
and Y [Munsell 2.5Y] (Figure 5, left). 50% Y is Munsell 2.5YR. 100%Y meant  a 
complete shift  of hue to Y.  Observers estimated lightness differences on a Munsell-
like scale indicating either increments and decrements, for the apparent  lightness 
value (Figure 5 center). Observers estimated chroma by assigning paint sample 
estimates relative to 100% (Figure 5, right). In case the target patch appears more 
saturated than ' ground truth' , estimates can overtake 100%.

We measured the Munsell Notation of chips of the 11 painted ' ground truth'  
samples, by placing the Munsell chips on top of the paint samples in daylight.  We 
know the direction and magnitude of changes in appearance from observer data.  
We made linear estimations to calculate the Munsell designation of the matching 
Munsell chip for each area. We used the distance in the Munsell Book as described 
in the MLAB color space, (Marcu, 1998; McCann, 1999b) as the measure of change 
in appearance. We assumed that the Munsell Book of Color is, as intended, equally 
spaced in color.  MLAB converts the Munsell designations to a format similar to 
CIELAB, but avoids its large departures from uniform spacing (McCann, 1999b).  
When the observer reports no change in appearance from illumination MLAB 
distance is zero.  A change as large as white to black (Munsell 10/ to Munsell 1) is 
MLAB distance of 90. 

Figure 13-6 identifies the 101 painted facets measured in these experiments.  
Appendix 1 shows the average of eleven observers’ results of the selected areas in 
the pair of 3-D Mondrians. We converted the observer magnitude estimates to an 
observed Munsell chip designation, and then to MLAB Color space.  Munsell chips 
vary from less than 10 to 1, while L*a*b* varies from 100 to 0.  We multiplied the 
estimated Munsell Lightness Value by 10.0.

€ 

ML =10 * (MunsellLightnessValue)                                          (13-1)

€ 

Mb = 5* (MunsellChroma * sin(HueAngle * PI () /180))              (13-2)

€ 

ML = (5*MunsellChroma)2 + (Mb)2                                      (13-3)
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We multiplied Munsell Chroma by 5 and by the sin of the hue angle as to calculate 
Mb.  Ma is the third side of the triangle in the Chroma plane for that Lightness 
(McCann, 1999b).  We averaged the 11 observed ML, Ma, MB values for each chip.

Figure 13-6. Identification of facet numbers.

Appendix 1 lists the average ML, Ma, Mb magnitude estimates for each color paint.  
For example, we asked the observers to evaluate 5 facets with red paint  in HDR.  
We used the circular target in front of the display as reference; R equals 2.5R4/14.  
We converted this Munsell designation to ML=40, Ma=69.9, Mb=7.3 values. The 
red paint  in the circular target on the back wall [Area 97] (See Figure 6), was 
ML=43.6, Ma=66.2, Mb=4.1 for LDR, and ML=27.1, Ma=59.5, Mb=6.3 for HDR. 
The distance between magnitude estimates was 18 MLAB units, or 20% of the 
distance between white and black. 

Magnitude Estimate Results
Appendix 1 lists the lightness (ML), hue and chroma (Ma, Mb) for the 11 paints and 
the average magnitude estimates for 78 selected areas.  For each area, we list  the 
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average ML, Ma, Mb values; the change in appearance from ground truth as delta 
ML, delta Ma, delta Mb and distance in the Munsell Book from ground truth 
(distance).  This distance is the square root of the sum of the squares of deltaML, 
deltaMa, deltaMb.  Appendix 1 also lists the ranges of delta ML, delta Ma, delta Mb 
for each paint.

The observers reported larger departures from ground truth in the High-Dynamic-
Range than in the Low-Dynamic range scenes.  For the red paint  the LDR ranges 
were ML=10, Ma=4, Mb=2; the HDR ranges were ML=18, Ma=28, Mb=45.  This 
pattern held for all the eleven paints.  For the five red samples, the individual 
distances in Munsell MLAB space were LDR=6, 14, 14, 11, 6 and HDR= 16, 25, 
15, 6, 50.  This illustrates an important  point.  In the LDR scene on average the 
changes in appearance were smaller in nearly uniform illumination. In the HDR 
scene the changes in appearance were larger, but there were individual areas that 
showed little or no change from ground truth. The changes in appearance in the 
LDR were mostly changes in lightness.  The changes in HDR were found in both 
lightness and chroma.  Area 11 in LDR is ML=43, Ma=65, Mb=4. This is 3 units 
lighter, 4 units less red, and 3 units bluer than ground truth.  In HDR illumination 
Area 11 is a sample of red paint  that is close to the LED illumination on the right. It 
has more short-wave light than the tungsten lamp on that  side of the Mondrian.  
Area 11 in HDR is ML=55, Ma=48, Mb=-36; that  is 15 units lighter, 22 units less 
red and 43 units more blue than ground truth.  For this facet the departure from 
constancy is larger in hue than in lightness.

The yellow paint samples in Appendix 1 show that  Areas 68 and 74 appear darker 
and have less chroma in the LDR scene (distance = 18, 22).  In the HDR scene Area 
74 is lighter (distance = 6), while Area 68 is 14 units lighter.  Area 100 is 26 units 
darker in HDR.

The green samples in the LRD scene show that Area 65 is lighter (distance 20), 
while in HDR it  is 5 units darker.  In LDR areas 50 and 51 are both darker and less 
yellow (distance =21, 27).  In HDR, Area 50 is 20 units lighter, while Area 51 is 40 
units darker and 33 units bluer.  Area 103 is 27 units darker and bluer in HDR.

In cyan LDR, Area 53 is 12 units lighter in both LDR and HDR.  Areas 45 is about 
20 units darker in both. Area 102 is 20 units darker in HDR.

In LDR all blue areas were within 10 units of ground truth.  In HDR Areas 99 and 
47 were darker and had less chroma (distance =30, 35). 

For the blocks with white paint, the shadows in the LDR caused a drift in lightness 
of 30 units. In HDR Area 81 showed a distance of 1 unit.  Area 83 was darker and 
slightly bluer (distance =33).  Area 84 had light  reflected from an adjacent magenta 
facet.  It  was darker and more magenta (distance 42). Area 85 had light  reflected 
from an adjacent yellow facet.  It was more yellow (distance 42). 
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Figure 13-7. Photograph of the painted watercolor of the LDR and HDR Mondrians.

The observer data shows that  in general the color estimates in LDR are closer to 
ground truth than HDR.  Nevertheless, there are areas in the HDR scene that look 
like the ground truth standard colors. The change in appearance of individual areas 
depends on the illumination and the other areas in the scene. The sources of 
illumination, the distribution of illumination, and inter-reflections of light  from one 
facet to another, all play a part generating appearance.  One cannot generalize the 
influence of the surface property (reflectance) of the facet  on appearance.  
Illumination and all of its spatial properties show significant  influence on the hue, 
lightness and chroma of observed appearances. 

6 Watercolor Rendition Measurements
After observers finished the Magnitude Estimations of Munsell designations, we 
left  the pair of 3-D Mondrians in place.  One of the authors (Carinna Parraman) 
painted with watercolors on paper a rendition of both 3-D Mondrians (Parraman, et. 
al 2010).  The painting took a considerable time to make the reproduction as close 
as possible to the appearances in both displays.  Painters are usually applying their 
particular ' aesthetic rendering'  that is a part  of their personal style.  In this case the 
painter worked to present on paper the most accurate reproduction of appearances 
possible. As with the magnitude estimation measurements, both LDR and HDR 
were viewed and painted together in the same room at the same time.  Figure 13-7 
is a photograph of the watercolor painting of the combined LDR/HDR scene.  

We made reflectance measurements with a Spectrolino® meter in the center of 101 
areas.  If the same paint  in the scene appeared the same to the artist, then all 
paintings spectra for this area should superimpose.  They do not.  The artist  selected 
many different spectra to match the same paint  on a number of blocks. (Figures 
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13-8, 13-9 and 13-9).  The artist  selected a narrower range of watercolor 
reflectances to reproduce the LDR scene.  Many more paint colors are needed to 
reproduce the HDR scene.  Nevertheless, some block facets appeared the same as 
ground truth, while others showed large departures. 

We measured the reflectance spectra of both LDR and HDR paintings at  each of the 
101 locations identified in Figure 13-6 using a Spectrolino® meter.  The meter 
reads 36 spectral bands, 10 nm apart  over the range of 380 to 730 nm.  We 
calibrated the meter using a standard reflectance tile.  The average reflectance for 
all wavebands for the all LDR samples is 39.9%. The average reflectance for all 
wavebands for the all HDR samples is 32.2%.  The average reflectance for all 
measurements is 36.0%.  

We considered how to represent these reflectance measurements taking into account 
human vision.  Analysis of percent reflectance overweights the high-reflectance 
readings, while analysis using log reflectance (optical density) overweights the low-
reflectance values.  Experiments that measure equal changes in appearance show 
that the cube root of reflectance is a good approximation of equal visual weighting 
(Wyszecki and Stiles,1982).  This non-linear cube root  transformation of reflectance 
has been shown to correlate with intraocular scatter. (Stiehl et. al., 1983; McCann 
and Rizzi, 2008; Rizzi and McCann, 2009) Thus, the cube root  of scene luminance 
is a better representation of the luminance on the observers retina (McCann and 
Rizzi 2009).  Studies by Indow (1980), Romney and Indow, (2003); Romney and 
D'Andrade. (2003) used the L* transform as the first  step in their studies of how 
cones, opponent  processes, and lateral geniculate cells map the perceptually 
uniform Munsell Color Space.

We used the L* function (equation 4) to scale Spectrolino reflectance value for each 
waveband in the following plots of painting spectra (Figures 13-8, 13-9, and 13-10).

€ 

L* =116 * reflec tannce1/ 3 −16                                                        (13-4)

Chromatic watercolor reflectances 
We plotted the watercolor spectra for all reproductions of the red painted block in 
both the LDR and HDR scenes (Figure 13-8, top row).  In the LDR reproduction, 
all but one of the facets had very similar measured reflectances.  This showed that 
appearances correlated well with the objects reflectance, with one exception.  In the 
HDR reproduction the painting had a wide variety of measured reflectances, 
showing that  the non-uniform illumination had considerable influence on limiting 
color constancy.  
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Figure 13-8. Reflectance spectra scaled by L* (Lightness(L*)) of red,  green, and blue, facets 
measured from watercolor LDR and HDR paintings. 

We plotted the watercolor spectra for all reproductions of the green painted block in 
both the LDR and HDR scenes Figure 13-8, second row).  In both the LDR and 
HDR paintings, we see again a wide variety of reproduction spectra again showing 
that the non-uniform illumination had considerable influence on limiting colour 
constancy.

We plotted the watercolor spectra for all reproductions of the blue painted block in 
both the LDR and HDR scenes Figure 13-8, third row).  In this case the HDR 
reproduction, had very similar measured reflectances in all but one of the facets. 
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The LDR reproduction had more variability in measured reflectances than the HDR 
painting.

Figure 13-9 Reflectance spectra scaled by L* (Lightness(L*)) of cyan, magenta, and yellow 
facets measured from watercolor LDR and HDR paintings.

The cyan reproduction of the HDR scene showed greater variability in lightness of 
similar spectra. (Figure 13-9 first row). The magenta reproduction of the HDR 
scene showed greater variability in lightness and spectra.  The yellow reproduction 
of both the LDR and HDR scene showed variability in lightness and spectra. 
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Figure 13-10 shows the reflectances of white, grays, and black facets measured from 
watercolor LDR and HDR paintings.
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It  is important  to study the photographs in Figure 13-2 and the paintings in Figure 
13-7 to see that  these results have more to do with the position of the blocks and 
their illumination than with the blocks’ paint color. 

Achromatic watercolor reflectances
Figure 13-10 compares the LDR and HRD painting reflectances for the five 
achromatic value blocks. Again, we see a complex pattern of departures from 
perfect colour constancy with significant departures caused by the specific 
illumination pattern.  Again, the study of the photographs and paintings shows that 
these results have more to do with the arrangement of the blocks and their 
illumination than with the block’s paint color.

Appendix 2 lists the three sets of colorimetric data from these experiments: 
reflectances of the paints on the blocks; radiances from the LDR and HDR scenes; 
and the reflectances of LDR/HDR watercolor rendering.  For the Spectrolino 
measurements we integrated the reflectance spectra with CIE , 

€ 

x ,y ,z  fundamentals.  
Then, these value were scaled by L* (equation 4) to approximate the stimulus on 
the retina.  The left-third of Appendix 2 lists the Area Identification Number ( 13-6), 
the paint, the L*(X), L*(Y), L*(Z) for the paint  on the blocks.  The right third lists 
the corresponding values for the LDR and HDR watercolor painting.  The middle of 
Appendix 2 lists the normalized radiance measurements made with a Konica 
Minolta CS100 colorimetric telephotometer.  We made two measurements (Y,x,y) 
for each block facets. They were converted to X,Y,Z; averaged and normalized in 
LDR by the White paint Area 9 measurements (X=284.7, Y=247.5 cd/m2, Z=62.8); 
in HDR by the White paint  Area 60 measurements (X=314.2, Y=273 cd/m2, 
Z=88.5.  These normalized values were scaled by L* (equation 4). 

Illumination affects lightness
Carinna Parraman’s watercolor painting of the side-by-side LDR and HDR 3-D 
Mondrians, along with the information about  the paint reflectances on the blocks, 
helps us to evaluate different computational models. 

First, by having an artist  render the appearances of the LDR / HDR scene we 
represent appearance in the same easily measurable physical space as the paint  on 
the blocks. The artist’s rendition converts the high-dynamic range, caused by 
illumination, into the set  of appearances expressed in the low-dynamic range of the 
watercolor. The conveniently measured watercolor reflectance is a measure of 
appearance. These measurements are ideal for evaluating computational algorithms. 
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Figure 13-11 studies a region in the center of the 3-D Mondrians.  The top row shows the 
sketch with Area IDs; the paint used on the blocks; the LDR; and HDR watercolor painting. 
The middle row shows the Spectrolino® watercolor L*(Y) values for these block facets. The 
bottom row shows the telephotometer L*(Y) values for these block facets.

Figure 13-11 shows central areas surrounding a dark gray and black block. The 
captured appearances of the LDR and HDR watercolor renderings have different 
values from the same paint on the blocks. Areas 36 and 38 have the same Neutral-
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Dark (ND) paint. The paint on the block has CIE L*(Y) value for both is 41.4.  
These constant surface reflectances have different  appearances in the LDR and 
HDR portions of the watercolor.  In LDR area 36, the top, is lighter [L*(Y)=49] 
than the side [L*(Y)=30]. In HDR, the top is darker [39], than the side [59].  (See 
Appendix 2 for values for all 101 areas.)  

In the HDR the order of the appearances changes in the different illumination.  Area 
38 is the lightest of the block’s faces in the HDR (36, 37, 38), and nearly tied for 
darkest  in the LDR.  These changes in appearance correlate with the changes in 
edges caused by the different  illuminations.  The bottom row of Figure 13-11 shows 
the telephotometer scaled luminances L*(Y).  The LDR area 36, the top, is lighter 
[34], than the side [18]. In HDR, the top is darker [17], than the side [37].  

The areas in Figure 13-11 illustrate that edges caused by illumination cause 
substantial change in the appearance of surfaces with identical reflectances.  The 
direction of the changes in appearance are consistent with the direction of changes 
in illumination on the block.  Edges in illumination cause substantial changes in 
appearance.  The data do not show correlation of appearance with luminance, rather 
it  demonstrates that change in appearance correlates with change in luminance 
across edges in illumination.

Illumination affects chroma 
Figure 13-12 shows a different section, right  of center, of the LDR and HDR scenes.  
These scene portions have a tall white block face that  is influenced by shadows and 
multiple reflections.  The white paint  has constant reflectance values [L*(X)=93, 
L*(Y)=93, L*(Z)=92)] from top to bottom (Appendix 2). The LDR appearances 
show light-middle-gray, and dark-middle-gray shadows.

The HDR appearances show four different appearances.  The painting shows: white 
at  the top, a blue-gray shadow below it, a pinker reflection and a yellow reflection 
below that. Shadows and multiple reflections show larger changes in appearance 
caused by different illumination.

Figure 13-12 shows sections of the watercolor for LDR (left), and HDR (right) in 
three sections.  The top section reports the L*(X), L*(Y), L*(Z) Spectrolino 
measurements of the painting.   The middle section reports on the photometer 
readings of the light coming from the blocks.  The bottom section reports on the 
average magnitude estimates of observers in ML, Ma, Mb units.  

The photographs of the LDR/HDR scene (Figure 13-2) and the watercolor painting 
show that the white block in LDR has achromatic shadows.  The measurements 
shown in Figure 13-12(left) of watercolor reflectances, light  from the different parts 
of the block, and magnitude estimates show very similar achromatic shifts in 
appearance.  The measurement on the right side of the figure are also similar to each 
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Figure 13-12 studies a region on the right of center of the 3-D Mondrians.  The left image 
segments shows LDR watercolor and the right shows the HDR.  All measurements are from 
a single white block with Areas 81,83,84,85.  The top sections shows the watercolor 
reflectances [L*(X), L*(Y), L*(Z)].  The middle section shows photometer readings from the 
blocks [L*(X), L*(Y), L*(Z)]; and the bottom section show average observer magnitude 
estimates [ML,Ma,Mb].

other and indicate a chromic shift  from the two light sources (Area 83) and from 
multiple reflections (Areas 84, 85).  The changes in illumination of the single white 
block caused relatively sharp edges in light  coming to the eye.  These abrupt 
changes in light coming to the eye caused observers to report  change in chroma as 
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measured by the watercolor and the magnitude estimates.  Anyone familiar the 
history of color constancy would not think that  these colors were determined with 
radiances from the block.  However, this data supports the observation that the 
changes in appearance correlate with the change in radiance at these edges.

Both Figures 13-11 and 13-12 show significant inconsistencies between appearance 
and object  reflectance. These discrepancies are examples of how the illumination 
plays an important role in color constancy. Both sets of measurements give very 
similar results.  Both sets of measurements show that appearance depends on the 
spatial properties of illumination, as well as reflectance.  Edges in illumination 
cause large changes in appearance, as do edges in reflectance.

7 Discussion
This paper studies a very simple question.  Can illumination change the appearances 
of blocks with the same surface reflectance?  We found a complicated answer.  
There is no universal generalization or result, rather a wide range of distinct 
individual observations.  In the LDR, illumination changes appearance some of the 
time.  In the HDR, illumination changes appearance most  of the time.  Appearance 
depends on the objects in the scene, their placement, and the spatial properties of 
the illuminations.  In these experiments we found no evidence to support the idea 
that illumination has different properties from reflectance in forming appearances 
(sensations). 

We have studied the effect of illumination using two different techniques.  The 
magnitude estimates analyze the results in a uniform color space.  By definition, 
distance in this space represents the size of the change in appearance for all hues, 
lightnesses and chromas.  Here we have averaged the estimates of 11 observers for 
36 facets.  In the second experiment, we analyzed the watercolor painting data for 
101 facets for a single observer in a modified colorimetric space. We integrated full 
spectral data under the color matching functions and scaled by equation 4.  This 
color space calculates the retinal spectral response (X,Y,Z) with a correction for 
intraocular scatter (L*) to analyze the retinal response. Both experiments give 
similar results, but  in different  color spaces.  Further, there are limitations imposed 
by the gamut  of possible colors in the watercolor paints that do not limit the 
magnitude estimate experiments.  The most  important comparison is the effect of 
illumination (LDR vs. HDR) on appearance.  Differences in color spaces and small 
differences caused by experimental techniques are of secondary importance.  

Figure 13-13 plots the distribution of distances between ground truth and observed 
color for the measurements of appearances (sensations) using the magnitude 
estimates and the watercolor reflectances.  The left graph binned the 38 magnitude 
estimates of MLAB distances into 9 groups 5 units wide.  The average LDR 
magnitude estimate distance from ground truth was 10±8 with a maximum distance 
of 29.7 and a minimum of 0.7. The average HDR magnitude estimate distance from 
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ground truth was 18.6±6 with a maximum distance of 51.9 and a minimum of 1.0.  
The population LDR distances are greatest  close to zero, decreasing with distance.  
There are no LDR distances near the maximum.  The HDR has fewer near zero, 
with the highest population in the middle of the range.  LDR and HDR have 
different distance distributions.

Figure 13- Comparison of the distributions of LDR and HDR distances from ground truth 
observed in magnitude estimation and watercolor reflectance experiments.

The right graph (Figure 13-13) binned the 101 watercolor reflectance distances [in 
L*(X), L*(Y), L*(Z) space] into 13 groups 10 units wide.  The average LDR 
magnitude estimate distance from ground truth was 26.7±21.9 with a maximum 
distance of 95.6 and a minimum of 2.9. The average HDR magnitude estimate 
distance from ground truth was 42.2±29.9 with a maximum distance of 129.9 and a 
minimum of 1.1.  Again, the population of LDR distances are greatest  close to zero, 
decreasing with distance.  There are no LDR distances near the maximum.  The 
HDR has fewer near zero, with the highest population in the middle of the range.  
The magnitude estimates and watercolor reflectances show similar departures from 
ground truth.

Discount Illumination
Another simple question is whether observer data supports the ' discount 
illumination' hypothesis. Hering observed that the process was approximate. The 
signature of the departures from perfect  constancy provides important  information 
about how human vision achieves constancy.  The data here shows that  illumination 
alters the spatial information of the scene.  Observer data correlated with spatial 
changes and not  illumination measurements.  The present experiment varies the 
intensities of two similar white lights.  Previous experiments (McCann 2004, 
2005a) varied the amounts of long-, middle-, and short-wave illumination (27 
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different  spectra) falling on a flat  surface in uniform illumination.  These 
experiments measured the departures from perfect constancy.  The results showed 
small changes in color appearances caused by illumination for highly colored 
papers, and no changes with achromatic papers.  A ' discounted illuminant'  must 
have the same effect  on all papers.  Thus, the departures from perfect constancy did 
not correlate with incomplete adaptation models.  Rather, these departures 
correlated with changes in edge ratios seen by the broad spectral sensitivity of 
human cone pigments.  Changing the spectral content of illumination alters the 
crosstalk between cone responses. Their broad spectral sensitivities alter the spatial 
information for colored papers, but not for achromatic ones. (McCann et  al 1976, 
McCann 2005a).  The 27 spectral illuminant  data, and the data in this paper, both 
show that  human color constancy does not work by discounting the illumination.  
The signatures of the departures from perfect  constancy do not support that 
hypothesis.

Real paints and lights
In the careful analysis of reflectance and illumination there is no room for errors 
and artifacts introduced by image capture and display technologies.  In 1976 we 
began to studies human vision using computer controlled complex image-displays 
(Frankle and McCann, 1983, McCann and Houston 1893a).  Since then, we have 
been aware of the need for extensive calibration of electronic imaging devices. 
(McCann and Houston, 1983b).  For the experiments in this paper, we chose to 
fabricate our test scene with real objects painted with exactly the same paints.  We 
chose to use real light  sources.  We were able to measure the reflectance of each 
paint, the Y,x,y of the light  coming from the surface, and the full spectra of the 
paints in the watercolor. 

High Dynamic Range (HDR) techniques are widely used today.  Multiple exposure 
techniques are used to improve photographic reproductions (Debevic and Malik 
1997, McCann 2007).  Nevertheless, multiple exposures do not record accurate 
scene radiances.  Rather they record the sum of the scene radiance and the 
undesired veiling glare from the camera and its optics. Glare is image dependent, 
and cannot be corrected by calibration (McCann and Rizzi 2007).  Scene 
information and glare cannot  be separated without  independent  radiance 
measurements of the scene.

Similarly, there are great difficulties in error-free rendering the information in 
computer memory on a print, or display device. Extensive calibration of all image 
areas throughout the full 3-D color space are needed to avoid hardware limitations. 
The hardware systems that convert  digits to light  have many operations that  alter 
the light  coming to the eye from the expected value to a different  device-dependent 
value.  The digital image stored in computer memory is continuously sent, via a 
graphics card, to the display pixel (refreshed at the rate specified by the hardware).  
The physical characteristics of the display (spectral emission, number and size of 
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pixels); the time budget (refresh rate and response times), the image processing in 
the graphics card; and the circuitry in the display all influence the display’s light 
output at each pixel.  The amount  of light  output  does not  always correspond to 
image digits in computer memory.  A good example is that the EMF of the display 
signals in the screen wiring introduces image-dependent color shifts (Feng and 
Daly, 2005). Hardware systems introduce image-dependent transformations of the 
input  signals that  on average improve the display’s appearance (Feng and Yoshida, 
2008).  HDR display with two active light modulators introduce even more 
complexity with high-resolution LCDs and low-resolution LEDs that are integrated 
with complex, proprietary, spatial filtering of the image data (Seetzen, et.al., 2004).  
It  is not  a simple matter to verify the accuracy of a display over its entire light-
emitting surface, for all light levels, for its entire 3-D 24-bit color space.  The 
combination of reflectances (range=100:1), and illuminations (range=100:1) require 
great  precision over a range of 10,000:1. Rather than calculate the combined effects 
of reflectances and illumination for an image-dependent display device, we chose to 
use real lights and paints for this analysis.

Nevertheless, these experiments are the combination of traditional object based 
research using paints and lights and modern digital imaging techniques.  The 
original experiments included making HDR image capture of these scenes using a 
number of different cameras.  Experiments on the HDR image processing are 
ongoing.  The goal of SCSA algorithms is to mimic vision (Rizzi 2007).  We are in 
the process of using the data from Appendix 2 to evaluate the result of the image 
processing.

Color Constancy Models
As one inspects the color appearances in the LDR and HDR watercolors it  is 
evident that  these color have a physical correlate.  That correlate is not the XYZ 
values of a pixel.  The correlate is the spatial relationship of XYZ values with 
different  pixels.  Darker regions of the same reflectance paint have edges created by 
the illumination.  The appearances observed here are consistent  with a model that 
builds colors from image structure. 

If we return to the five computational models we discussed in the introduction, we 
can evaluate how they apply to these experiments. The McCann, McKee, and 
Taylor data show that  flat Mondrian appearances correlated with reflectances 
(measured with human cone sensitivities) in uniform illumination. The model they 
tested built  those calculated reflectances by spatial comparisons.  The intent was to 
show that it was possible to calculate reflectances using spatial comparisons without 
ever finding the illumination.  If one applies a spatial model to these 3-D Mondrians 
we would not calculate the paints’ reflectances.  Instead we would get  a rendition of 
the scene that  treated edges in illumination the same as edges in reflectance.  The 
Retinex spatial model shows correlation with reflectance sometimes, (in flat 
Mondrians), but not all the time (in 3-D Mondrians).  (Table 13-2, Row 3)
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CIELAB/CIECAM models measure the X, Y, Z reflectances of individual pixels 
and transform them into a new color space.  There is nothing in the calculation that 
can generate different  outputs from identical reflectance inputs, as frequently 
observed in color appearances in 3-D scenes. These models predict the same color 
appearance for all blocks with the same reflectance. While useful in analyzing 
appearances of flat scenes such as printed test  targets, it  does not  predict appearance 
with shadows and multiple reflections. (Table 13-2, Row 4)

The third class of model, Computer Vision, has the specific goal of calculating the 
object’s reflectance.  The question here is whether such material recognition models 
have relevance to vision.  If a computer vision algorithm correctly calculated cone 
reflectance of the flat Mondrians, then one might argue that  such processes could 
happen in human vision (Ebner, 2007).  However, the 3-D Mondrians, and other 
experiments show that illumination affects the observers’ responses. (Rutherford 
and Brainard 2002, Yang and Shevell 2003).  If that  same computer vision 
algorithm correctly calculated 3-D Mondrian reflectances, then these calculations 
are not  modeling appearances in 3-D Mondrians.  Computer Vision is a distinct 
discipline from human vision, with very different objectives. (Table 13-2, Row 5) 

The fourth class of model, Surface Perception, has the specific goal of calculating 
the object’s estimate of the reflectance.  We did not  ask the observer to guess the 
reflectance of the facets in these experiments.  We told observers that  the blocks had 
only 11 paints, identified in the color wheel.  Observers were likely to get very high 
correlations with actual reflectance in the LDR because the 11 paint samples were 
so different from each other.  In the HDR illumination we would expect  that  there 
would more confusion, as shown by the appearances in Figures 13-11 and 13-12.  
Modeling surface perception is a distinct field from measuring the appearances 
(sensations) in complex 3-D scenes.  Since observers give different responses, the 
surface perception model must have different properties (Table 13-2, Row 6).

The fifth class of model is Spatial Color Synthesis Algorithms. Their goal is to 
calculate the appearance (sensation question) of the LDR and HDR scenes.  The 
goal is to create an image processing renditions of both LDR and HDR scenes for 
LDR prints or displays.  Their common feature is the analysis of spatial information 
(both reflectance and illumination), so that the correlation with reflectance depends 
on the scene. (Table 13-2, Row 7).

We have captured multiple exposure images of the LDR and HDR parts of the 3-D 
Mondrian scene, and have some preliminary renditions.  Our ongoing study will 
incorporate the data in Appendix 2 in the evaluation of the success of the 
algorithms. That data will help us to assess SCSA, and other models trying to mimic 
the human vision system.  The complexity of the 3-D Mondrian scene can allow 
both quantitative and qualitative validation of models.  Matching just  the direction 
of all the shifts in appearance caused by the scene is a difficult  task. Matching the 
amount of such a shift can assess the robustness of a model. 
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Table13-2 summarizes the following: The human visual pathway generates 
appearances that correlate with reflectances some of the time.  Spatial models of 
vision use image structure to calculate appearances also correlate with reflectance 
some of the time.  CIE models that  transform reflectance into a different  color space 
give constant output for constant input.  Computer vision, if successful, always 
calculates reflectance.  Surface Perception models calculate the answers to a 
different  question, namely they calculate what the observer thinks is reflectance.  
Finally, Spatial Color Synthesis Algorithms have the goal of calculating appearance 
whether, or not, it corresponds to reflectance.

Table 13-2 lists human vision and the five computation models of color constancy (goals, 
mechanism, and outputs correlation with reflectance). 

Humans exhibit  color constancy using scene radiances as input.  The appearances 
they see are influenced by the spatial information in both illumination and 
reflectance.  Measuring, or calculating reflectance, is insufficient  as a model of 
visual appearance in real complex scenes.

8 Conclusions 
Our experiments used two identical arrays of 3-D objects in uniform (LDR) and 
non-uniform (HDR) illumination.  They were viewed in the same room at the same 
time.  All flat facet  objects have been painted with one out  of a set  of 11 paints.  We 
used two different techniques to measure the appearances to observers of these 
constant  reflectance paints.  The first recorded observer magnitude estimates of 
change in Munsell Notation; the second measured an artist’s watercolor rendition of 
both scenes.  Both magnitude estimates and watercolor reflectances showed the 
same results.  There is no general rule, based on illumination and reflectance, to 
describe the observations.  Rather, we measured a great many individual departures 
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from perfect constancy.  In nearly uniform illumination more samples appear the 
same as ' ground truth'  than in complex HDR illumination.  Even small departures 
from perfectly uniform illumination generate departures in appearances from 
reflectance.  If an image-processing algorithm discounted the illumination, and 
succeeded in accurately calculating objects’ reflectances, then that  algorithm would 
not predict appearances in real-life scenes with complex non-uniform illumination.  
Edges and gradients in illumination behave the same as edges and gradients in 
reflectance with the same light patterns.
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